# Solmar (Niagara 2) Inc.

# HYDROGEOLOGICAL INVESTIGATION

200 John Street and 588 Charlotte Street,

Niagara-on-the-Lake, Ontario

Project No. 2018-0419



#### COLE ENGINEERING GROUP LTD.

HEAD OFFICE

June 2020

70 Valleywood Drive Markham, ON L3R 4T5 **T.** 905 940 6161 | 416 987 6161 **F.** 905 940 2064 www.coleengineering.ca



June 30, 2020 Reference No. 2018-0419

Luis Correia Solmar (Niagara 2) Inc. 122 Romina Drive Concord, ON L4K 4Z7

Attention: Mr. Correia

#### Hydrogeological Investigation Report Proposed Development at 200 John Street and 588 Charlott Street, Niagara-on-the-Lake, ON

Cole Engineering Group Ltd. (COLE) is pleased to submit the enclosed hydrogeological investigation report for the site located at 200 John Street and 588 Charlotte Street, Niagara-on-the-Lake, ON. This investigation includes a review of the hydrogeological information collected from the site, characterization of the geological and hydrogeological setting, assessment of potential impacts due to the proposed development, and proposed mitigation measures.

Should you have any questions or comments, please do not hesitate to contact the undersigned.

Best Regards, COLE ENGINEERING GROUP LTD.

Alireza Hejazi, Ph.D., P.Eng. Project Manager and Hydrogeologist

For Steve Davies, M.Sc., P.Geo. Senior Hydrogeologist

#### COLE ENGINEERING GROUP LTD.

HEAD OFFICE 70 Valleywood Drive, Markham, ON Canada L3R 4T5 T. 905 940 6161 | 416 987 6161 F. 905 940 2064 www.coleengineering.ca



Solmar (Niagara 2) Hydrogeological Investigation Report



PREPARED BY:

#### COLE ENGINEERING GROUP LTD.

vee rejor

For James Magee, M.Sc. Environmental Specialist

CHECKED BY:

COLE ENGINEERING GROUP LTD.

vee rejor

Alireza Hejazi, Ph.D., P.Eng. Hydrogeologist and Environmental Engineer

#### AUTHORIZED FOR ISSUE BY:

COLE ENGINEERING GROUP LTD.

M. M. Husain

Muin Husain, Ph.D., P.Geo. Senior Hydrogeologist

#### **Issues and Revisions Registry**

| Identification                            | Date             | Description of issued and/or revision |
|-------------------------------------------|------------------|---------------------------------------|
| Draft Report                              | 27 November 2018 | For internal review                   |
| Draft Report                              | 30 November 2018 | For client review                     |
| Final Report                              | 4 October 2019   | For client review                     |
| Final Report (minor site plan<br>updates) | 30 June 2020     | For client review                     |
|                                           |                  |                                       |



#### **Statement of Conditions**

This Report has been prepared at the request of, and for the exclusive use of, Solmar (Niagara 2) Inc., and its affiliates (the "Intended User"). No one other than the Intended User has the right to use and rely on the Work without first obtaining the written authorization of Cole Engineering Group Ltd. and Solmar (Niagara 2) Inc. Cole Engineering Group Ltd. expressly excludes liability to any party except the Intended User for any use of, and/or reliance upon, the work.

Neither possession of the Work, nor a copy of it, carries the right of publication. All copyright in the Work is reserved to Cole Engineering Group Ltd. The Work shall not be disclosed, produced or reproduced, quoted from, or referred to, in whole or in part, or published in any manner, without the express written consent of Cole Engineering Group Ltd. or Solmar (Niagara 2) Inc.

# COLE

# **Table of Contents**

Transmittal Letter Table of Contents

| Execu | itive Si | ummaryii                                                                         | i  |
|-------|----------|----------------------------------------------------------------------------------|----|
| 1     | Intro    | duction                                                                          | L  |
|       | 1.1      | Project Background                                                               | 1  |
|       | 1.2      | Objectives                                                                       | 1  |
| 2     | Appli    | cable Regulation and Agencies1                                                   | L  |
| 3     | Regio    | nal Geological and Hydrogeological Understanding                                 | 2  |
|       | 3.1      | Topography and Physiography                                                      | 2  |
|       | 3.2      | Regional Geology and Hydrogeology                                                | 3  |
| 4     | Local    | Geology and Hydrogeology                                                         | 3  |
|       | 4.1      | Geotechnical Investigation                                                       | 3  |
|       | 4.2      | Groundwater Conditions                                                           | 3  |
|       |          | 4.2.1 Groundwater Levels                                                         |    |
|       |          | 4.2.2 Groundwater Flow                                                           |    |
|       |          | <ul><li>4.2.3 Hydraulic Conductivity</li><li>4.2.4 Groundwater Quality</li></ul> |    |
| -     | <b>C</b> | ndwater – Surface Water Interactions                                             |    |
| 5     |          |                                                                                  |    |
|       | 5.1      | Streamflow                                                                       |    |
|       | 5.2      | Stream Bank Mini-Piezometers                                                     |    |
|       | 5.3      | Groundwater – Surface Water Summary                                              |    |
| 6     | Wate     | r Balance Analysis                                                               | 3  |
|       | 6.1      | Water Balance Analysis Methodology                                               | 3  |
|       | 6.2      | Water Balance Analysis Results                                                   | 9  |
| 7     | Poter    | itial Receptors                                                                  | Э  |
|       | 7.1      | Local Groundwater Users                                                          | Э  |
|       | 7.2      | Environmental Features                                                           | )  |
| 8     | Poter    | itial Impacts and Proposed Mitigation10                                          | כ  |
|       | 8.1      | Identification and Mitigation of Potential Impacts10                             | C  |
|       |          | 8.1.1 Potential Impacts to the Groundwater System                                |    |
|       |          | 8.1.2 Potential Impacts to Natural Areas                                         |    |
|       |          | 8.1.3 Potential Impacts to Other Groundwater Users                               |    |
|       |          | 8.1.4 Potential Impacts related to Dewatering Activities                         |    |
|       |          | 8.1.5 Mitigation of Impacts1                                                     | T. |

# COLE

| 9  | Summary1    | 1 |
|----|-------------|---|
| 10 | References1 | 2 |

#### LIST OF TABLES

| Table 4.1 | Water Level Measurements                                         | 4 |
|-----------|------------------------------------------------------------------|---|
| Table 4.2 | Estimated Vertical Hydraulic Gradient at onsite Monitoring Wells | 4 |
| Table 4.3 | Estimated Hydraulic Conductivity                                 | 5 |
| Table 4.4 | Groundwater Quality Results                                      | 5 |
| Table 5.1 | Surface Water Monitoring Station Details                         | 7 |
| Table 5.2 | Piezometer Water Level Measurements                              | 7 |
| Table 5.3 | Estimated Vertical Hydraulic Gradients at Mini-Piezometers       | 8 |
| Table 6.1 | Summary of Infiltration Factors                                  | 9 |
| Table 7.1 | Summary of Private Well Uses within 1 km of the Site             |   |
|           |                                                                  |   |

#### LIST OF FIGURES

- Figure 1 Site Location
- Figure 2 Topography
- Figure 3 Physiography
- Figure 4 Surficial Geology
- Figure 5 Bedrock Geology
- Figure 6 Monitoring Well and Borehole Location
- Figure 7 MECP Water Well Record Search
- Figure 8 Natural Features

#### APPENDICES

- Appendix A Conceptual Site Plan
- Appendix B Geotechnical Borehole Logs
- Appendix C Hydraulic Conductivity Calculations
- Appendix D Water Quality Analysis Results
- Appendix E Water Balance Analysis

# **Executive Summary**

Cole Engineering Group Ltd. ("COLE") was retained by Solmar (Niagara 2) Inc. to undertake a hydrogeological investigation in support of the proposed residential development 220 John Street and 588 Charlotte Street, Niagara-on-the-Lake, ON (the "Site").

The Site is situated in the Iroquois Plain physiographic region, and falls under the jurisdiction of the Niagara Peninsula Conservation Authority ("NPCA"). Regional mapping indicates that the Site is not located within Wellhead Protection Area ("WHPA") or Significant Recharge Area ("SGRA"). However, the Site is located within a highly vulnerable aquifer ("HVA").

At a regional scale, groundwater flows to the north towards Lake Ontario. Four (4) monitoring events were completed from September 27, 2018 to August 21, 2019 to assess groundwater levels at the Site. Groundwater elevations were generally higher in the southern portion of the Site and at a lower elevation in the northern portion of the Site. Shallow groundwater flow appears to augment the direction of regional groundwater flow and surface topography and flows in a northeasterly direction towards Lake Ontario.

Single-well hydraulic tests were conducted in three (3) on-site monitoring wells to determine the in-situ hydraulic conductivity (K) of the screened overburden materials. The in-situ K values were estimated to range from  $1.1 \times 10^{-6}$  m/s to  $2.5 \times 10^{-8}$  m/s.

Two (2) groundwater samples were collected from two (2) on-site monitoring wells. The results were compared against the Provincial Water Quality Objectives ("PWQO"). Based on the laboratory analysis, the results met the applicable criteria with the exception of minor exceedances of total cobalt and total uranium.

A small tributary has been mapped across the northern portion of the Site. No stream flow was observed at the monitoring station during the four (4) monitoring events. A mini-piezometer nest station was installed to assess potential interaction between the groundwater system and on-site watercourse. The downward vertical hydraulic gradient estimates obtained at mini-piezometer nest indicates that that the stream is not groundwater fed.

Potential impacts to the groundwater system associated with the proposed development include reduction in infiltration, lowering of the groundwater levels in the overburden, and the potential introduction of preferential pathways for contaminants. Based on the results of a preliminary water balance analysis for the Site, an infiltration reduction of 12,075 m<sup>3</sup>/year is anticipated as a result of the proposed development without any mitigation.

Low Impact Development ("LID") measures (e.g., underground infiltration trenches, grassed or dry swales, and green roofs) may be proposed and designed at the detailed design stage to address the infiltration deficit and match pre-development infiltration. The use of collars or other methods to restrict preferential movement of groundwater along the subsurface infrastructure corridors are recommended to preserve the existing groundwater flow regime. Furthermore, road salt application at the proposed development should be managed to minimize sodium and/or chloride loading to the shallow groundwater system.

# 1 Introduction

#### 1.1 Project Background

Cole Engineering Group Ltd. ("COLE") was retained by Solmar (Niagara 2) Inc. to undertake a hydrogeological investigation in support of the proposed residential development at 220 John and 588 Charlotte Street, Niagara-on-the-Lake, ON (the "Site"). The Site is located within an agricultural setting and is bounded by vineyards to the east with residential subdivisions that extend from the southwest along the Promenade Road to the northwest along the Charlotte Street and John Street intersection. The Site is irregular in shape with an approximate area of 12.34 hectares (ha) and consists primarily of vacant land. The location of the Site is shown on **Figure 1**.

The proposed development consists of residential semi-detached and single-detached homes. Collectively, 191 units will be constructed as part of the final development and will utilize much of the available land that is currently present. A proposed conceptual site plan is shown in **Appendix A**.

#### 1.2 Objectives

This hydrogeological investigation was conducted to:

- Characterize the existing geological and hydrogeological setting;
- Identify groundwater-related regulations applicable to the Site development;
- Assess potential groundwater-surface interactions;
- Review groundwater quality results for the Site and compare to Provincial Water Quality Objectives ("PWQO");
- Assess the potential impacts to the natural environment and other groundwater users as a result of the development; and
- Provide recommendations on management measures to mitigate potential impacts.

## 2 Applicable Regulation and Agencies

Environmental regulations and policies that may be relevant for this hydrogeological investigation are briefly discussed below.

#### Niagara Peninsula Conservation Authority ("NPCA") Policies and Regulations (O.Reg. 155/06)

Under Section 28 of the *Conservation Authorities Act*, the local conservation authorities are mandated to protect the health and integrity of the regional greenspace system and to maintain or improve the hydrological and ecological functions performed by valley and stream corridors. The NPCA, through its regulatory mandate, is responsible for issuing permits under *Ontario Regulation (O.Reg.)* 155/06, *Development, Interference with Wetlands and Alterations to Shorelines and Watercourses* for development proposal or Site alteration work within the regulated areas.

Based on mapping by the NPCA, the small portion of the Site is located within a NPCA regulated area (regulated floodplains). As such, a permit under *O.Reg.* 155/06 will be required for the proposed development.



#### Town of Niagara-on-the-Lake Official Plan (2017)

The Official Plan of the Town of Niagara-on-the-Lake contains a vision and sets up policies that deal with legislative and administrative concerns, policies to guide physical growth and policies to express a wide of social, economic and environmental concerns. Based on Schedule J, any proposed development or site alternation within or adjacent to any natural heritage feature, the regulated area of the NPCA, and the official Plan of the Town Niagara-on-the-Lake shall provide an inventory and assessment of ecological features to determine areas to be protected.

#### Permit to Taker Water ("PTTW"), Section 34 of the Ontario Water Resource Act (1990)

For construction dewatering, water takings of more than 50,000 L/day but less than 400,000 L/day may be registered on the Environmental Activity and Sector Registry ("EASR"), while water takings of more than 400,000 L/day require a PTTW issued by the Ministry of Environment, Conservation and Parks ("MECP"). If it is identified that an EASR or PTTW is required for the Site, then an updated hydrogeological report would need to be submitted in support of the application. The updated report would include assessment of any potential impacts associated with the construction dewatering and establish a monitoring plan and set of mitigation measures to address the potential impacts.

#### The Clean Water Act, 2006

The MECP mandates the protection of existing and future sources of drinking water under the Clean Water Act, 2006 ("CWA"). Initiatives under the CWA include the delineation of Wellhead Protection Areas ("WHPAs"), significant groundwater recharge areas ("SGRAs") and Highly Vulnerable Aquifers ("HVAs") as well as the assessment of drinking water quality and quantity threats within Source Protection Regions. Source Protection Plans are developed under the CWA and include the restriction and prohibition of certain types of activities and land uses within WHPAs.

Based on a review of the Source Water Protection Report mapping produced by the NPCA, the Site is not located within a WHPA or a SGRA. Therefore, the CWA is not applicable.

## 3 Regional Geological and Hydrogeological Understanding

#### **3.1** Topography and Physiography

The Site lies within the Niagara River Watershed, which is under the jurisdiction of the NPCA. The regional topography is generally flat with slight undulations. The Niagara River is located approximately 1 km east of the Site boundary and flows north to Lake Ontario. Additionally, a creek traverses across the northern section of the Site and is located approximately 100 m southwest of John Street East. Within the Site, the ground surface is generally flat with an average elevation of approximately 93 m above sea level ("masl"). A map of the local topography surrounding the Site is shown on **Figure 2**.

The Site is situated within the physiographic region known as the Iroquois Plain. In this region, the area is described as a having stratified clay, sand and silt glaciolacustrine deposits which are underlain by silt to silt clay till deposits (Chapman and Putnam, 1984). A physiography map of the Site and surrounding area is shown on **Figure 3**.

### 3.2 Regional Geology and Hydrogeology

The current understanding of the geological and hydrogeological conditions was based on work by the Ontario Geological Survey ("OGS") and information available from the NPCA.

In general, overburden thickness is interpreted to range from approximately 5 m to 10 m. The regional surficial geology within and around the Site is characterized by glaciolacustrine deposits that have been reworked sand, silts and clay. Surficial mapping indicates that the Site is underlain by coarse-textured glaciolacustrine deposits. In addition, surrounding the Site are clayey silt glacial till deposits. **Figure 4** illustrates the regional surficial geology underlying the Site.

The bedrock underlying the Site consists of the Queenston Formation. The Queenston Formation consists primarily of shale, with minor amounts of limestone, dolostone, and siltstone (OGS, 2005). The bedrock surface in the area is expected to be at approximately 80-85 masl. A bedrock geology map is presented as **Figure 5**.

Based on the abundance of fine-grained glaciolacustrine deposits, fine-grained till, and shale bedrock, widespread transmissive aquifers are not anticipated. The fine-grained units may act as a semi-confining layer.

# 4 Local Geology and Hydrogeology

The current understanding of the local geological and hydrogeological environment at the Site is based on the geotechnical investigation conducted by Soil Engineers Ltd. ("Soil Engineers") and the hydrogeological investigation conducted by COLE.

#### 4.1 Geotechnical Investigation

In August 2018, Soil Engineers conducted a geotechnical investigation at the Site (Soil Engineers, 2018). As part of this investigation, nine (9) boreholes were drilled to depths ranging between 5.4 m below ground surface ("mbgs") and 9.3 mbgs. The boreholes were identified as BH 1 through BH 9 and are illustrated on **Figure 6**. Based on the borehole logs, the primary composition of the overburden material at the Site consist of silty clay, sandy silt till to silty clay till, with some silt and silty sand. Earth fill material was encountered at BH8, which consisted of sandy silt, with rock fragments and brick debris. The fill thickness at BH8 was 1.4 m. The overall thickness of the overburden ranged from 5.4 m to 9.1 m. The corresponding borehole logs are included in **Appendix B**.

#### 4.2 Groundwater Conditions

To support the hydrogeological investigation, the four (4) boreholes (three (3) shallow and one (1) deep) were completed as 50 mm groundwater monitoring wells to a maximum depth of approximately 9.65 mbgs. Three (3) shallow monitoring wells (MW1-S, MW2, and MW7) were screened to depths ranging from 3.1 mbgs to 6.1 mbgs and one (1) deep monitoring well (MW1-D) was screened to depths ranging from 6.1 mbgs to 9.1 mbgs The monitoring wells were used to measure groundwater levels, collect samples for groundwater quality analyses, and estimate hydraulic conductivity of the screened units. A map illustrating the location of the boreholes and monitoring wells is provided as **Figure 6**.

#### 4.2.1 Groundwater Levels

Each monitoring well was developed prior to measuring the water level by removing a minimum of three (3) well volumes of water to clear any silt or drilling debris from the sandpack and well casing. Four (4) monitoring events were conducted from September 27, 2018 to August 21, 2019 to assess groundwater levels at the Site. Monitoring data are presented in **Table 4.1**.

| Well ID | Ground              |                  |      | 27 Sep 18 16 Nov 18 |      | ov 18 | 29 Ma | rch 19 | 21 A | ug 19 |
|---------|---------------------|------------------|------|---------------------|------|-------|-------|--------|------|-------|
| weilib  | Elevation<br>(masl) | bottom<br>(mbgs) | mbgs | masl                | mbgs | masl  | mbgs  | masl   | mbgs | masl  |
| MW1-S   | 91.50               | 6.2              | 2.14 | 89.36               | 1.78 | 89.72 | 1.27  | 90.23  | 1.40 | 90.10 |
| MW1-D   | 91.50               | 9.3              | 2.24 | 89.26               | 1.86 | 89.64 | 1.33  | 90.17  | 1.45 | 90.05 |
| MW2     | 91.10               | 6.3              | 4.12 | 86.98               | 3.76 | 87.34 | 2.46  | 88.64  | 3.06 | 88.04 |
| MW7     | 90.50               | 6.6              | 2.57 | 87.93               | 2.55 | 87.95 | 1.81  | 88.69  | 2.03 | 88.47 |

Notes:

mbgs meters below ground surface

masl meters above sea level

A review of the groundwater level measurements indicates that the groundwater level ranges from 90.23 masl (1.27 mbgs) to 86.98 masl (4.12 mbgs). The highest observed groundwater level (90.23 masl) was measured at MW1-S on March 29, 2019 and the lowest observed water level (86.98 masl) was measured at MW2 on September 27, 2018.

Based on our conceptual understanding of the local hydrogeology, monitoring wells are considered to be screened within the unconfined overburden and the water levels recorded from the monitoring wells are interpreted to be representative of the shallow groundwater table.

#### 4.2.2 Groundwater Flow

At a regional scale, groundwater is expected to flow north or northeast towards Lake Ontario and / or the Niagara River (Waterloo Hydrogeologic, 2005). Based on the groundwater levels collected during the four (4) monitoring events, shallow groundwater flows in a northeast direction and is consistent with the direction of the regional groundwater flow.

The vertical hydraulic gradient was also estimated at a monitoring well nest (MW1D/MW1S). **Table 4.2** below summarizes the calculated vertical hydraulic gradient at the well nest for the water level monitoring events conducted from September 27, 2018 to August 21, 2019.

|--|

| Well Nest | Vertical Hydraulic Gradient (m/m) |           |             |           |  |  |
|-----------|-----------------------------------|-----------|-------------|-----------|--|--|
|           | 27-Sep-18                         | 16-Nov-18 | 29-March-19 | 21-Aug-19 |  |  |
| MW1D/MW1S | 0.04                              | 0.03      | 0.02        | 0.02      |  |  |

Notes:

|                                                                                           |           | Vertical Hydraulic Gradient (m/m) |             |           |  |  |  |
|-------------------------------------------------------------------------------------------|-----------|-----------------------------------|-------------|-----------|--|--|--|
| Well Nest                                                                                 | 27-Sep-18 | 16-Nov-18                         | 29-March-19 | 21-Aug-19 |  |  |  |
| Negative values indicate an unward gradient: positive values indicate a downward gradient |           |                                   |             |           |  |  |  |

Negative values indicate an upward gradient; positive values indicate a downward gradient.

Based on the available water level measurement collected between September 27, 2018 and August 21, 2019, the vertical hydraulic gradient at the MW1D/MW1S well nest was determined to be neutral to downward.

#### 4.2.3 Hydraulic Conductivity

Single-well hydraulic tests were conducted by COLE on September 27 and 28, 2018 in three (3) monitoring wells. These tests were carried out to estimate the in-situ hydraulic conductivity (K) of the screened overburden materials.

During each hydraulic test, a known volume of water was displaced from the well by either inserting a slug or removing water. The recovery was measured either manually or using a data logger until a minimum of 80% recovery was achieved. Hydraulic conductivity estimates were obtained using the Hvorslev method (1951). Estimated K values are presented in **Table 4.3**. Details of the Hvorslev method and a summary of Hvorslev calculations are presented in **Appendix C**.

| Table 4.5 Estimated Hydraulie conductivity |                      |                      |                       |                        |  |  |  |  |
|--------------------------------------------|----------------------|----------------------|-----------------------|------------------------|--|--|--|--|
| Well ID                                    | Well Diameter<br>(m) | Screen Length<br>(m) | Screen Unit           | K<br>(m/s)             |  |  |  |  |
| MW1-D                                      | 0.05                 | 3                    | Sandy Silt Till/Shale | 1.1 x 10 <sup>-6</sup> |  |  |  |  |
| MW2                                        | 0.05                 | 3                    | Sandy Silt Till       | 2.5 x10 <sup>-8</sup>  |  |  |  |  |
| MW7                                        | 0.05                 | 3                    | Sandy Silt Till       | 5.4 x 10 <sup>-8</sup> |  |  |  |  |

#### Table 4.3 Estimated Hydraulic Conductivity

The in-situ K values estimated using the Hvorslev method range from  $1.1 \times 10^{-6}$  m/s to  $2.5 \times 10^{-8}$  m/s. Overall, the estimated hydraulic conductivities are within the range for the types of materials (sandy silt till) in which the shallow monitoring wells were screened (Freeze and Cherry, 1979).

#### 4.2.4 Groundwater Quality

COLE collected two (2) groundwater samples on September 28, 2018 from two (2) on-site monitoring wells (MW1-D and MW2). The collected samples were sent to Maxxam Analytics for analyses of metal and inorganic criteria. Analytical results were compared to Provincial Water Quality Objectives ("PWQO"). Results are summarized in **Table 4.4** below. The laboratory analytical results and Certificate of Analysis are included in **Appendix D**.

| Table 4.4 | Groundwater Quality Results |
|-----------|-----------------------------|
|-----------|-----------------------------|

| Parameter     | Parameter Units |    | MW1-D | MW2  |  |  |  |  |
|---------------|-----------------|----|-------|------|--|--|--|--|
| Inorganics    |                 |    |       |      |  |  |  |  |
| Total Ammonia | mg/L            | 20 | 0.051 | 0.25 |  |  |  |  |

#### Table 4.4Groundwater Quality Results

| Parameter                                | Units | PWQO<br>Guidelines | MW1-D | MW2   |
|------------------------------------------|-------|--------------------|-------|-------|
| Dissolved Oxygen                         | mg/L  | -                  | 8.67  | 8.51  |
| рН                                       | рН    | 6.5-8.5            | 8.21  | 8.18  |
| Phenols-4AAP                             | mg/L  | 1.0                | ND    | ND    |
| Total Phosphorus                         | mg/L  | 30                 | 24    | 12    |
| Sulphide                                 | mg/L  | -                  | 0.20  | 0.037 |
| WAD Cyanide (Free)                       | μg/L  | 2                  | ND    | 660   |
| Alkalinity (Total as CaCO <sub>3</sub> ) | Mg/L  | -                  | 310   | ND    |
| Metals                                   |       |                    |       |       |
| Dissolved (0.2u) Aluminum (Al)           | ug/L  | 75                 | 5     | ND    |
| Chromium (VI)                            | ug/L  | 1                  | ND    | ND    |
| Mercury (Hg)                             | ug/L  | 0.2                | ND    | ND    |
| Total Antimony (Sb)                      | ug/L  | 20                 | ND    | ND    |
| Total Arsenic (As)                       | ug/L  | 100                | 8.4   | 1.1   |
| Total Beryllium (Be)                     | ug/L  | 1100               | ND    | ND    |
| Total Boron (B)                          | ug/L  | 200                | 230   | 88    |
| Total Cadmium (Cd)                       | ug/L  | 0.5                | ND    | ND    |
| Total Chromium (Cr)                      | ug/L  | -                  | ND    | ND    |
| Total Cobalt (Co)                        | ug/L  | 0.9                | ND    | 1.4   |
| Total Copper (Cu)                        | ug/L  | 5                  | ND    | 3.8   |
| Total Lead (Pb)                          | ug/L  | 5                  | ND    | ND    |
| Total Molybdenum (Mo)                    | ug/L  | 40                 | 13    | 13    |
| Total Nickel (Ni)                        | ug/L  | 25                 | 1.2   | 9.2   |
| Total Selenium (Se)                      | ug/L  | 100                | ND    | ND    |
| Total Silver (Ag)                        | ug/L  | 0.1                | ND    | ND    |
| Total Thallium (TI)                      | ug/L  | 0.3                | ND    | ND    |
| Total Tungsten (W)                       | ug/L  | 30                 | ND    | 1.0   |
| Total Uranium (U)                        | ug/L  | 5                  | 2.4   | 7.7   |
| Total Vanadium (V)                       | ug/L  | 6                  | 1.1   | 0.77  |
| Total Zinc (Zn)                          | ug/L  | 30                 | ND    | 7.7   |
| Total Zirconium (Zr)                     | ug/L  | 4                  | ND    | ND    |

Based on laboratory analyses, the results for the groundwater sample collected from BH2 on September 27, 2018 exceeded the PWQO for total cobalt and total uranium. All other parameters met the criteria.

COLE

# 5 Groundwater – Surface Water Interactions

#### 5.1 Streamflow

No stream flow was observed at the monitoring station during the four (4) monitoring events. Based on this observation, this water course is interpreted to not be a perennially flowing feature.

#### 5.2 Stream Bank Mini-Piezometers

One (1) stream bank mini-piezometer nest was installed by COLE adjacent to the mapped on-site watercourse to assess potential groundwater – surface water interactions. The locations of the surface water monitoring stations are illustrated on **Figure 10**.

Each mini-piezometer consists of a 1.9 cm diameter galvanized steel pipe with a 0.3 m screened drivepoint. The piezometers were driven manually into the stream bank using a slide hammer. The shallow piezometers (denoted by "S" after the piezometer ID) were driven to depths ranging from 1.5 mbgs to 2.2 mbgs. The deep piezometers (denoted by "D" after the piezometer ID) were driven to depths ranging from 2.0 mbgs to 3.4 mbgs. Details of the surface water monitoring station is presented in **Table 5.1**.

| Monitoring<br>Station ID | Piezometer<br>ID | Ground<br>Elevation at<br>Piezometer<br>(masl) | Piezometer<br>Depth to bottom<br>of the screen<br>(mbgs) | Piezometer<br>Top of Riser<br>above<br>Grade (m) | Piezometer<br>Diameter<br>(m) | Piezometer<br>Screen<br>Length (m) |
|--------------------------|------------------|------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|-------------------------------|------------------------------------|
| PZ-1                     | PZ-1D            | 88.5                                           | 2.23                                                     | 0.43                                             | 0.02                          | 0.30                               |
| PZ-1                     | PZ-1S            | 88.5                                           | 0.55                                                     | 0.85                                             | 0.02                          | 0.3                                |

Notes:

masl = metre above sea level

mbgs = metre below ground surface

Water levels at the mini-piezometers were measured manually from September 27, 2018 to August 21, 2019 through four (4) monitoring events. The piezometer water level monitoring data are presented in **Table 5.2.** Vertical hydraulic gradients were also estimated at each piezometer nest to assess potential groundwater-surface water interactions, as shown in **Table 5.3**.

| Well ID | Ground              | Depth to<br>bottom | 27 Sep 18 |       | 16 N | ov 18 | 29 Ma | 21 Aı | ug 19 |       |
|---------|---------------------|--------------------|-----------|-------|------|-------|-------|-------|-------|-------|
| Well ID | Elevation<br>(masl) | (mbgs)             | mbgs      | masl  | mbgs | masl  | mbgs  | masl  | mbgs  | masl  |
| PZ-1D   | 88.5                | 2.23               | 1.71      | 86.79 | 1.06 | 87.44 | 0.38  | 88.13 | 0.4   | 88.10 |
| PZ-1S   | 88.5                | 0.55               | dry       | dry   | 0.55 | 87.95 | 0.11  | 88.39 | 0.46  | 88.04 |

 Table 5.2
 Piezometer Water Level Measurements

| Well Nest | Vertical Hydraulic Gradient (m/m) |           |             |           |  |  |  |  |  |  |  |
|-----------|-----------------------------------|-----------|-------------|-----------|--|--|--|--|--|--|--|
| weii Nest | 27-Sep-18                         | 16-Nov-18 | 29-March-19 | 21-Aug-19 |  |  |  |  |  |  |  |
| MW1D/MW1S | -                                 | 0.51      | 0.27        | -0.06     |  |  |  |  |  |  |  |

#### Table 5.3 Estimated Vertical Hydraulic Gradients at Mini-Piezometers

Notes:

Negative values indicate an upward gradient; positive values indicate a downward gradient.

'-' indicates that the vertical hydraulic gradient could not be estimated due to one or both piezometers being dry

A downward hydraulic gradient was estimated for the PZ-1 monitoring station on November 16, 2018 and March 29, 2019. Despite the estimated upward vertical hydraulic gradients on August 21, 2019, it was noted that no flow was observed at this location. Therefore, any groundwater contribution to the tributary at this location is believed to be minimal.

#### 5.3 Groundwater – Surface Water Summary

Based on the observation of no flow in the water course during the Site visits and the downward vertical gradients, the water course is interpreted not to be perennial nor receive groundwater discharge.

### 6 Water Balance Analysis

As part of the hydrogeological investigation, a water balance analysis was completed to compare predevelopment and post-development recharge conditions to evaluate predicted changes in recharge and runoff volumes due to the proposed development.

#### 6.1 Water Balance Analysis Methodology

A site scale water balance analysis was completed following the Thornthwaite and Mather water balance method outlined in *Chapter 3 of the Ministry of Environment's ("MOE"s) Stormwater Management Planning and Design Manual* (MOE, 2003). The water balance method estimates evapotranspiration, infiltration, and runoff volumes based on soil types, vegetation cover, topography, and precipitation.

The St. Catharines/ Niagara District Airport station (ID# 6137287) is the closest meteorological station to the Site. Therefore, the climate normal data from this station between 1981 and 2010 were obtained from Environment Canada and used in the water balance analysis.

The monthly mean temperature and monthly precipitation data were used in the Thornthwaite and Mather Equation to estimate the monthly potential evapotranspiration. The estimated monthly potential evapotranspiration was adjusted using a daylight correction value to account for varying length of daylight throughout the year.

The precipitation surplus (amount of water available to infiltrate or runoff) was estimated by calculating the difference of the yearly precipitation and potential evapotranspiration. Infiltration was estimated by multiplying a set of infiltration factors (dependent on the topography, soil type and land cover) to the estimated precipitation surplus.

Impervious percentages for the pre-development and post-development scenarios were estimated by measuring the total impervious areas across the Site and are summarized in **Table 6.1**. The estimations of

pre-development pervious area and the post-development impervious areas were based on the Existing Site Condition plan provided by SGL (SGL Planning & Design Inc., June 2020).

The infiltration factor for each area was selected from Table 3.1 in the MOE's Stormwater Management Planning and Design Manual (MOE, 2003) based on various factors (topography, soil type and land cover) and is summarized in **Table 6.1**. Based on the geotechnical investigation by Soil Engineers Ltd. (Soil Engineers, 2018), the primary composition of the overburden material at the Site consist of silty clay, sandy silt till to silty clay till, with some silt and silty sand.

An infiltration factor reflective of medium combinations of clay and loam was assumed in estimating the infiltration rates for the Site.

| Area                 | Area<br>(m²) | Impervious<br>Percentage | Measured<br>Slope<br>(m/m) | Infiltration<br>Factor<br>(Topography) | Infiltration<br>Factor<br>(Soil) | Infiltration<br>Factor<br>(Cover) |
|----------------------|--------------|--------------------------|----------------------------|----------------------------------------|----------------------------------|-----------------------------------|
| Pre-Development      | 123,400      | 2%                       | 0.01                       | 0.2                                    | 0.2                              | 0.2                               |
| Post-<br>Development | 123,400      | 64%                      | 0.01                       | 0.2                                    | 0.2                              | 0.2                               |

Table 6.1Summary of Infiltration Factors

## 6.2 Water Balance Analysis Results

Based on the water balance analysis for the pre-development conditions, infiltration comprises a small portion (16%) of total precipitation, runoff comprises 12% of total precipitation, and evapotranspiration comprises the majority (72%) of total precipitation. A low infiltration rate is expected at the Site due to the low permeability soils (silty clay to silty sand) encountered during this investigation. The estimated overall infiltration rate for the pre-development scenario is approximately 141 mm/year (17,457 m<sup>3</sup>/year).

The post-development water balance showed an increase in runoff and reduction in evapotranspiration and infiltration in the absence of mitigation measures due to the increased impervious areas. The post-development infiltration is reduced to approximately 6% of total precipitation, compared to 16% in the pre-development scenario. Runoff is increased to approximately 55% of total precipitation while evapotranspiration is decreased to approximately 39% of total precipitation. Based on the water balance analysis, the estimated infiltration in the post-development scenario is approximately 52 mm/year or 6,420 m<sup>3</sup>/year before any mitigation measures are applied.

The difference between pre-development and post-development infiltration is approximately 89 mm/year (11,036 m<sup>3</sup>/year). Details of the water balance analysis are presented in **Appendix E**.

# 7 Potential Receptors

#### 7.1 Local Groundwater Users

A MECP well records search conducted around the Site identified 45 wells within a 1 km radius. Based on the MECP well records, the majority of wells (42%) were classified as monitoring and test hole wells. Seven (7) supply wells were identified within 1 km of the Site of which two (2) were used for livestock. The search results are summarized in **Table 7.1**. The locations of nearby MECP well records are illustrated on **Figure 7**.

| Well Use             | Number of Wells | Percent of Wells |
|----------------------|-----------------|------------------|
| Monitoring/Test Hole | 19              | 42               |
| Unknown/Other        | 15              | 33               |
| Observation          | 3               | 7                |
| Abandoned            | 1               | 2                |
| Water Supply         | 7               | 16               |
| Total                | 45              | 100%             |

 Table 7.1
 Summary of Private Well Uses within 1 km of the Site

A search of permitted water takers around the Site was conducted in November 2018 through the MECP digital data request process. The search return one (1) active groundwater taker within 850 m northeast of the Site. The permitted water taker was identified to be the Shaw Festival Theatre located on 10 Queen's Parade.

#### 7.2 Environmental Features

There are no natural features on the Site aside from a small wooded area. The Niagara River is located approximately 1 km east of the Site boundary and flows north to Lake Ontario. Additionally, a creek traverses across the northern section of the Site and is located approximately 100 m southwest of John Street East. A search of the Natural Heritage Information Centre returned no significant environmental features within the Site's boundary (Ministry of Natural Resources and Forestry ("MNRF"), 2017). The natural features located within a 1 km buffer of the Site are illustrated on **Figure 8**.

## 8 Potential Impacts and Proposed Mitigation

#### 8.1 Identification and Mitigation of Potential Impacts

#### 8.1.1 Potential Impacts to the Groundwater System

The proposed development will increase the impermeable cover and, as a result, reduce the amount of infiltration to the underlying aquifer units while increasing surface water run-off. The results of the water balance analysis indicated the post-development infiltration is reduced to approximately 6% of the total precipitation, compared to 16% in the pre-development scenario. As a result, long-term impacts to the regional groundwater system may result from the reduced amount of groundwater infiltration to the aquifers. However, this impact is expected to be small at a watershed scale since the Site is not located within a SGRA under the CWA.

The introduction of overburden material with different hydraulic properties or alterations to the local topography during construction can affect the existing groundwater system. Installation of Site services could also potentially introduce preferential pathways for contaminants to the groundwater and alter the natural groundwater levels and pathways. Moreover, local groundwater quality may be affected by the future application of road salt along the roadways.

#### 8.1.2 Potential Impacts to Natural Areas

As mentioned in **Section 7.2**, there is a surface water feature that traverses across the northern portion of the Site. Since this feature is interpreted not be perennial nor receive groundwater discharge, the expected reduction in infiltration should not impact this feature.

The increase in runoff due to increased impervious areas may result in greater stream flows into on-site and nearby watercourses, potentially leading to channel erosion and an increase in sediment loading into downstream surface water features. As such, the downstream water quantity and quality of the surface water features could potentially be affected by the proposed development without appropriate mitigation measures.

#### 8.1.3 Potential Impacts to Other Groundwater Users

The areas around the Site are relatively developed and serviced with municipal water. Groundwater users are not expected in the area and potential impacts to nearby groundwater users are unlikely.

#### 8.1.4 Potential Impacts related to Dewatering Activities

According to Section 34 of the Ontario Water Resources Act ("OWRA"), any groundwater taking greater than 400,000 L/day will require a Category 3 Permit to Take Water from the MECP. If the groundwater taking is less than 400,000 L/day but more than 50,000 L/day, the construction related taking can be filed under EASR online registry instead. A detailed review of site conditions and proposed infrastructure design will need to be undertaken to assess the need for dewatering during construction once site plans are prepared.

Should dewatering be required during construction, erosion control and settlement or filtration measures may be needed to remove entrained sediment from construction dewatering discharge prior to it being discharged to the natural environment in order to meet the PWQO.

#### 8.1.5 Mitigation of Impacts

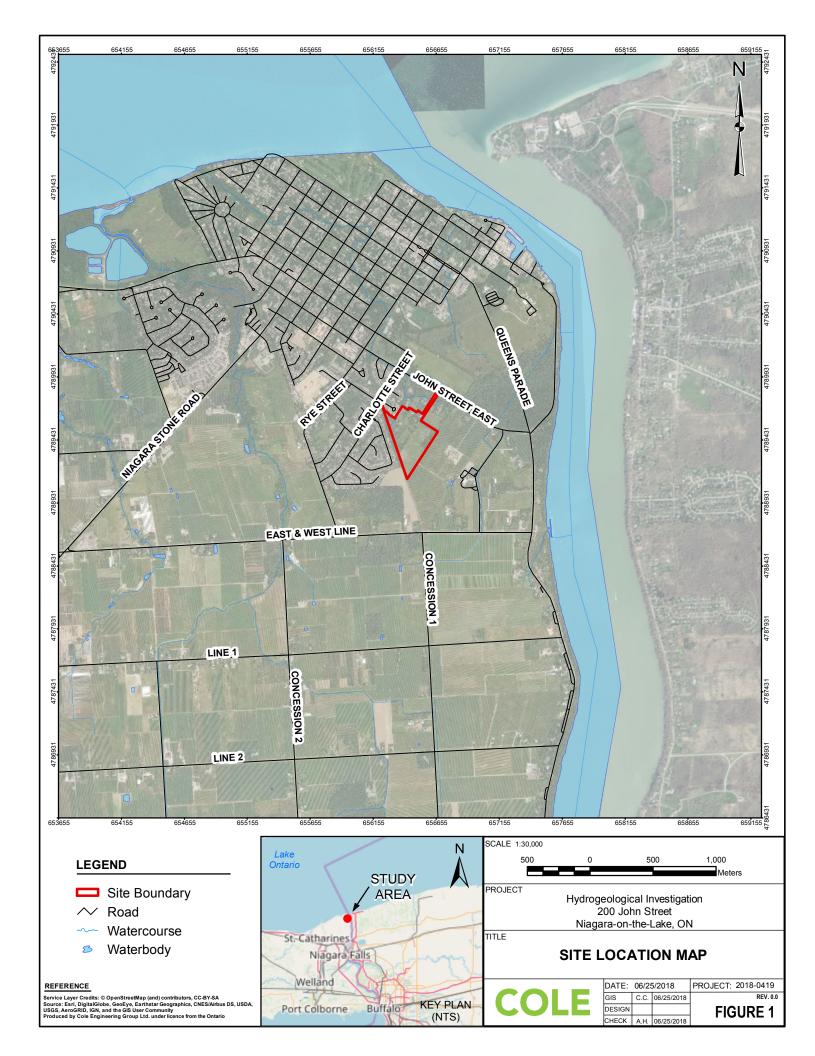
On a regional scale, most aquifer recharge occurs in areas where coarse-grained units are found at shallow depth. The Site is not expected to contribute a significant amount of infiltration on a watershed scale due to the generally low permeability of the overburden materials on-site. Various Best Management Practices ("BMP"s) (e.g., underground infiltration trenches, grassed or dry swales, green roofs) could be incorporated into the proposed development that would promote infiltration and decrease runoff. They may address the infiltration deficit and help preserve the existing groundwater flow regime, including maintaining groundwater contributions to nearby groundwater-dependent features. The use of collars or other methods to restrict the preferential movement of groundwater along the subsurface infrastructure corridors should also be considered.

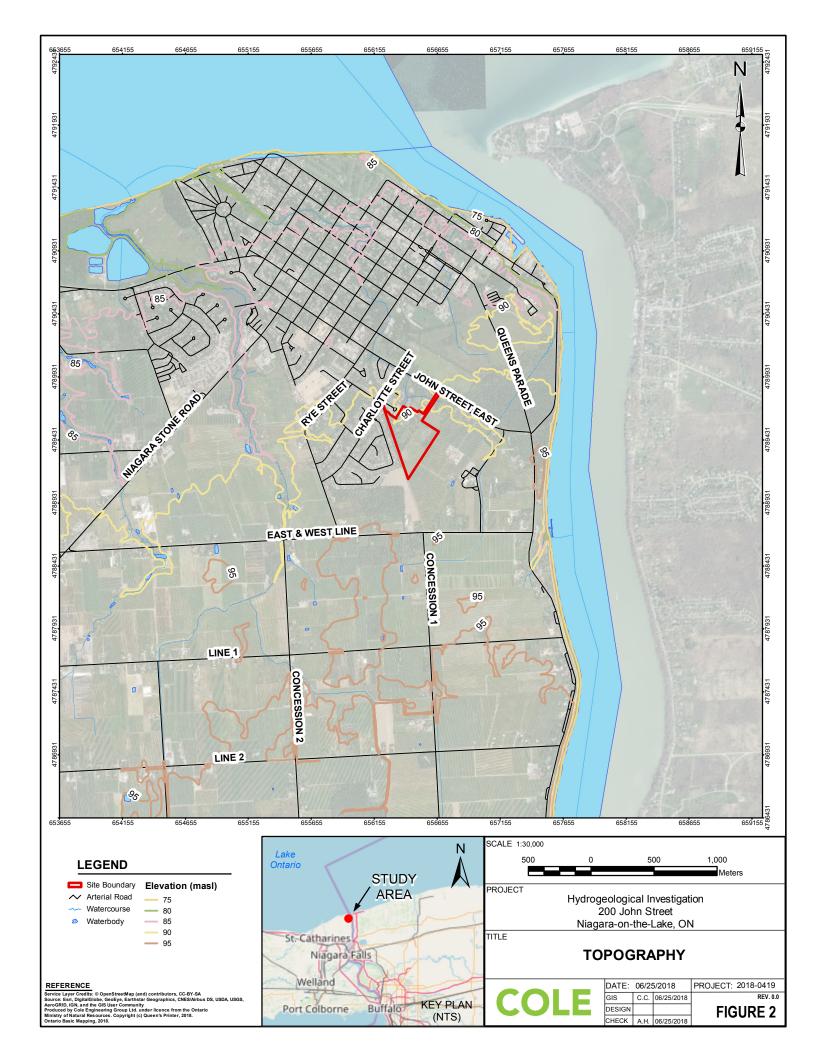
#### 9 Summary

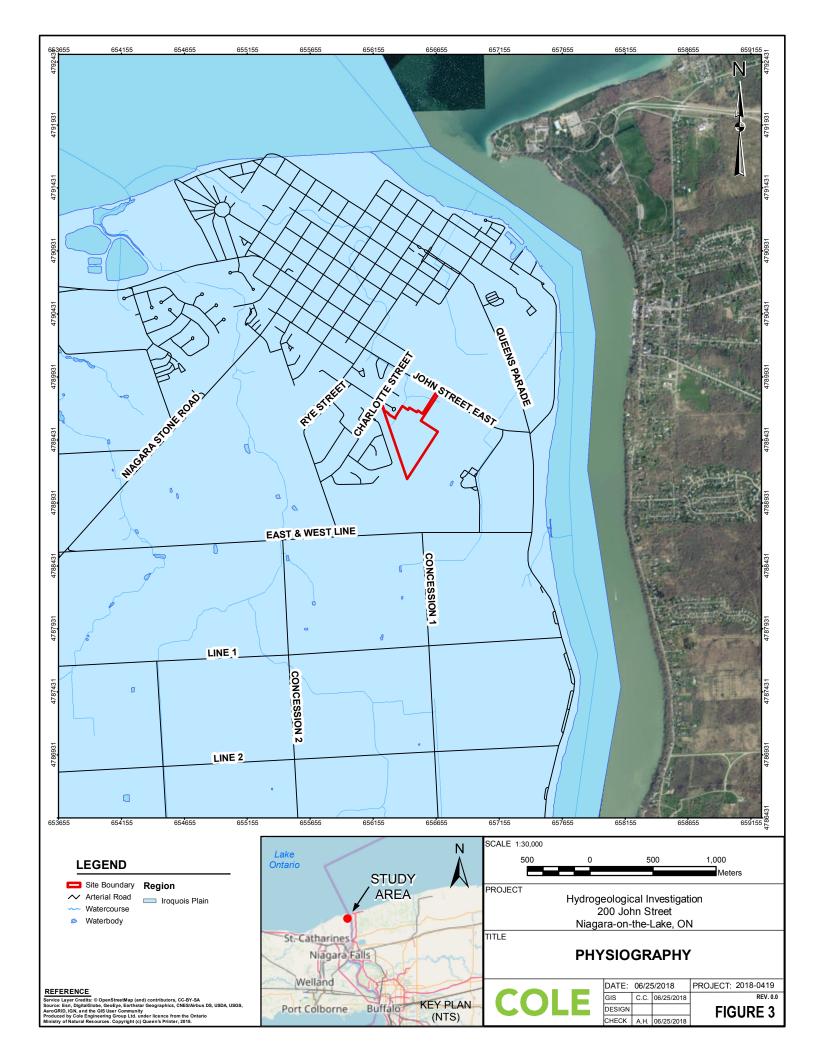
A summary of the hydrogeological investigation is provided below:

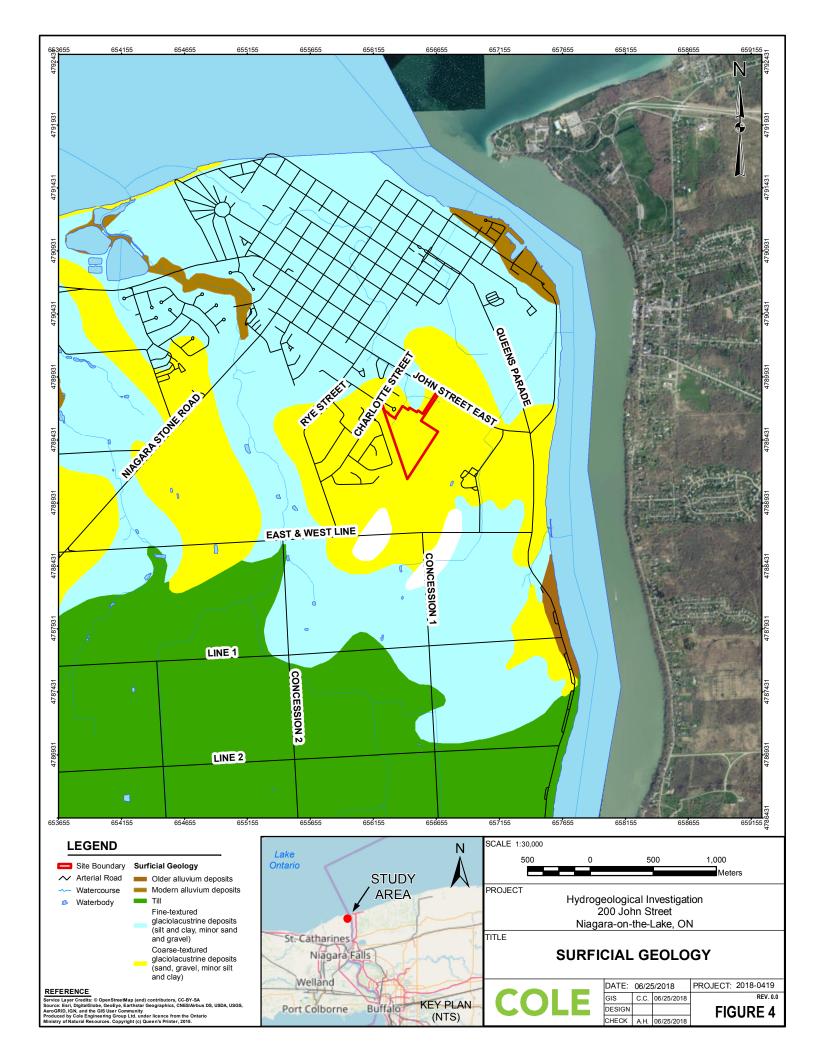
- The Site is located within the Iroquois Plain physiographic region, which consist of fine-grained (silt and clay) glaciolacustrine deposits.
- Based on the borehole logs, surficial lithology comprised of topsoil or fill underlain predominantly fine-grained soil (silty clay, sandy silt till to silty clay till, with some silt and silty sand). Bedrock was

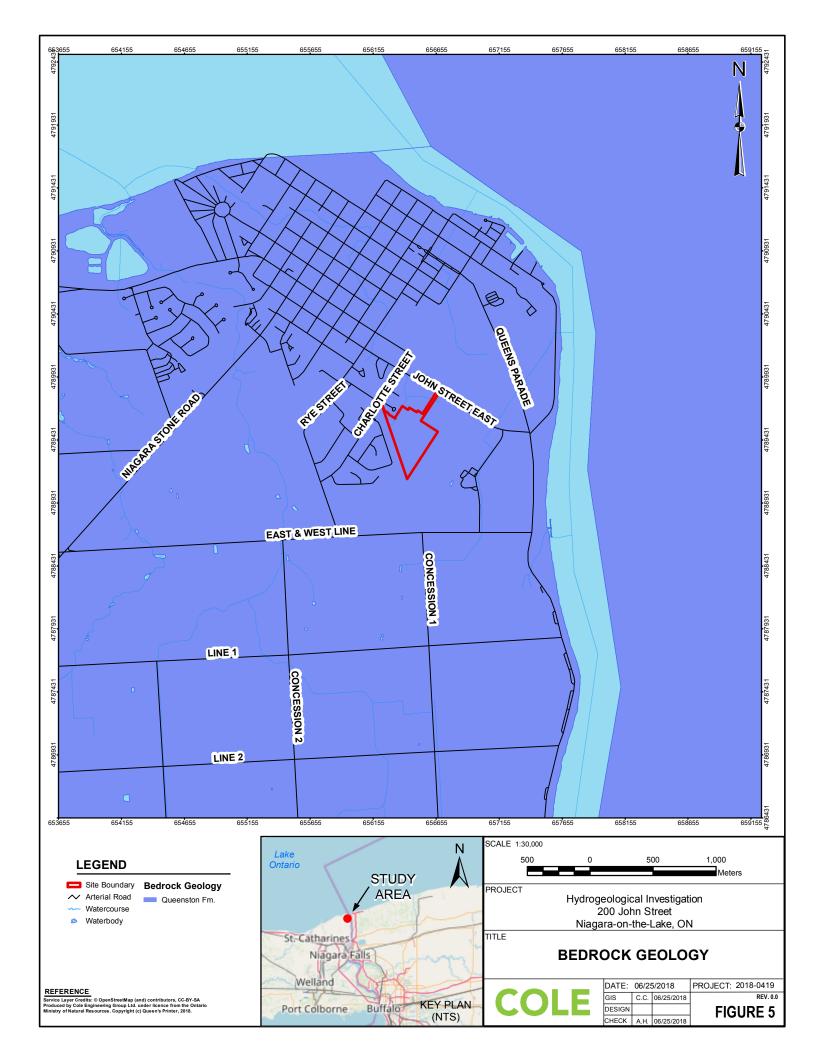
encountered at BH1, BH2, and BH3 and was confirmed to be part of the Queenston (shale) Formation.

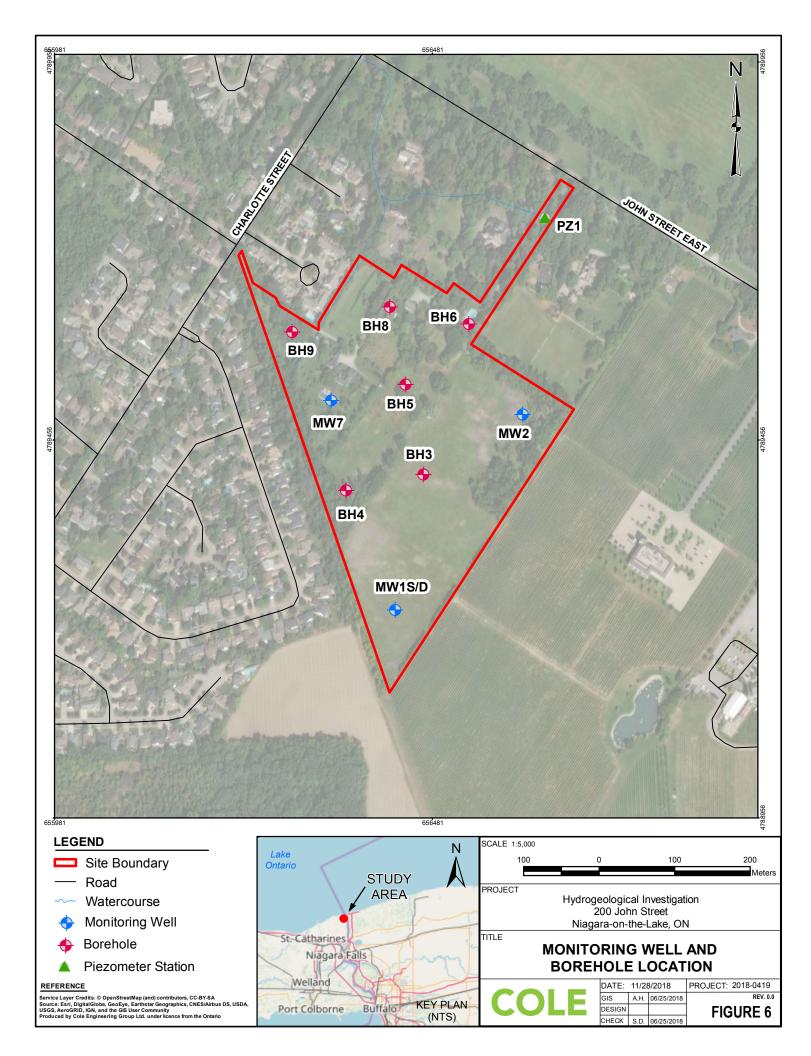

- Single-well rising-head and falling-head tests were conducted in on-site monitoring wells to determine the in-situ hydraulic conductivity of the screened overburden materials. The in-situ K values were estimated to range from  $1.1 \times 10^{-6}$  m/s to  $2.5 \times 10^{-8}$  m/s.
- Groundwater levels at the monitoring wells were measured from September 28, 2018 to August 21, 2019 through four (4) monitoring events. The water levels from both monitoring events ranged between 4.12 mbgs and 1.27 mbgs.
- Two (2) groundwater samples were collected from two (2) on-site monitoring wells (MW1-D and MW2) on September 28, 2018. Based on laboratory analyses, the results for groundwater samples met all criteria for the PWQO guidelines with the exception of total cobalt and total uranium where elevated concentrations were noted for MW2.
- The potential long-term impacts to the groundwater system associated with the development include: reduction in infiltration; lowering of the groundwater levels in the overburden; and the introduction of preferential pathways for contaminants. Implementation of BMPs to promote infiltration and the use of collars or other methods to restrict preferential movement of groundwater along the subsurface infrastructure corridors are recommended to preserve the existing groundwater flow regime.

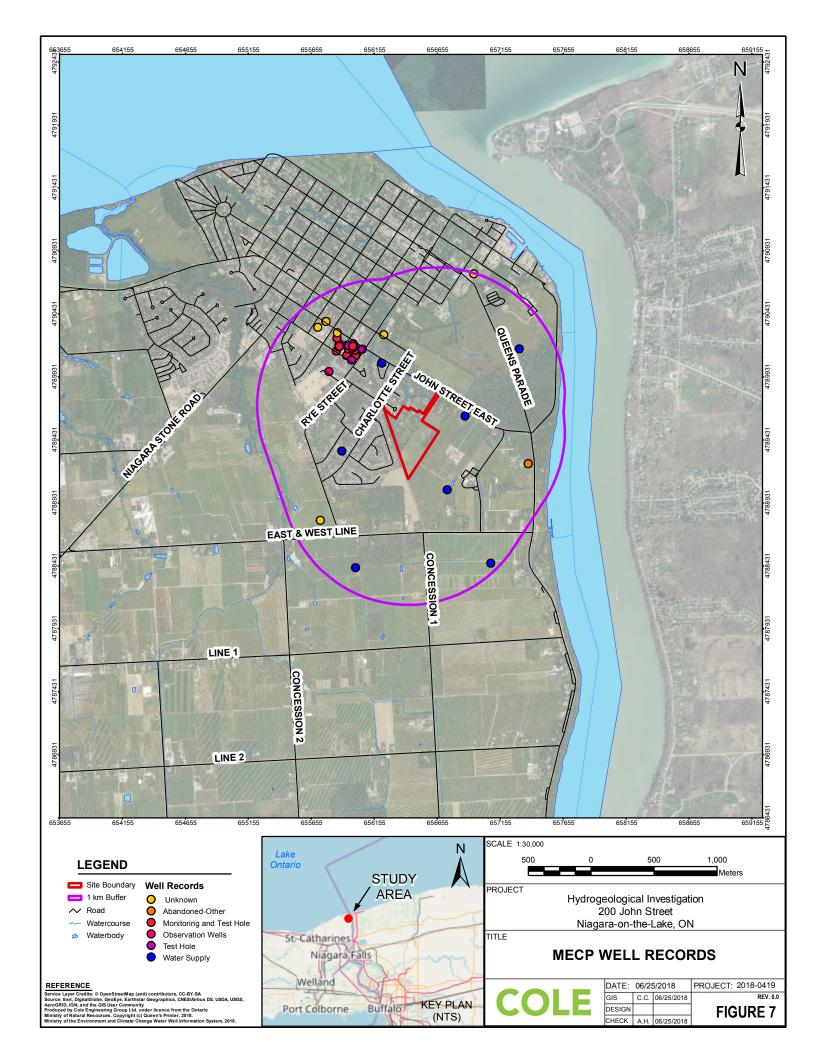

### 10 References

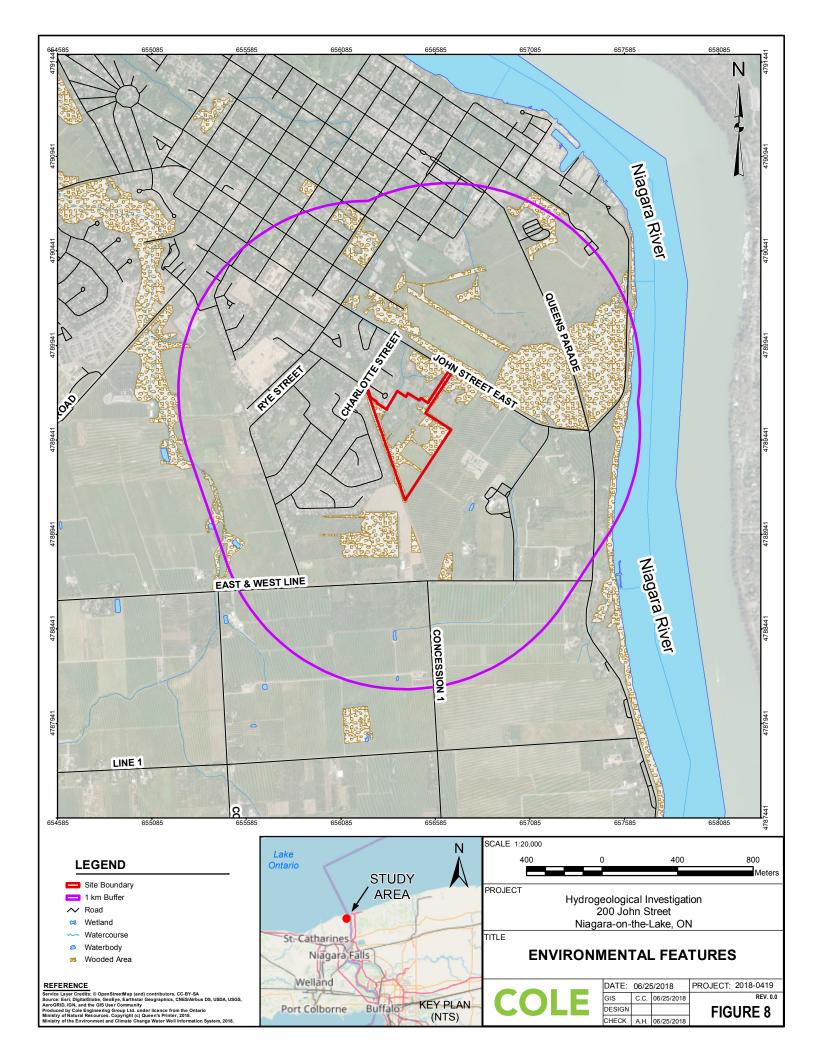

- Chapman, L.J. and Putnam, D.F. (1984). *The Physiography of Southern Ontario*, 3<sup>rd</sup> ed. Ontario Geological Survey. Toronto: Ontario Ministry of Natural Resources.
- Freeze, A. & Cherry, J. (1979). *Groundwater*. New Jersey: Prentice-Hall Inc.
- Hvorslev, M. J. (1951) Time Lag and Soil Permeability in Groundwater Observations. Vicksburg, Miss: U.S. Army Corps. Engrs. Waterway Exp. Sta. Bull. 36
- Ministry of the Environment, Conservation and Parks. 2018. Permit to Take Water Database.
- Ministry of the Environment, Conservation and Parks. 2018. Water Well Information System.
- Ministry of Environment, 2003. Stormwater Management Planning and Design Manual.
- Waterloo Hydrogeologic Inc., October 2005. NPCA Groundwater Study Final Report.
- Ontario Geological Survey. 2003. *Surficial Geology of Southern Ontario*; Ontario Geological Survey, Miscellaneous Release-Data 128.
- Ontario Geological Survey. 2005. *Bedrock Geology of Ontario;* Ontario Geological Survey. Seamless Coverage Data Set 6.
- Ontario Ministry of Natural Resources and Forestry, 2017, Ontario Base Map.
- SGL Planning & Design Inc. (December 2018). Draft Plan of Subdivision, Lots 145 and 156 and Lot 1, Town of Niagara-on-the-Lake, Regional Municipality of Niagara.


Soil Engineers Ltd. 2018. A geotechnical investigation for proposed residential development. 1807-S136.

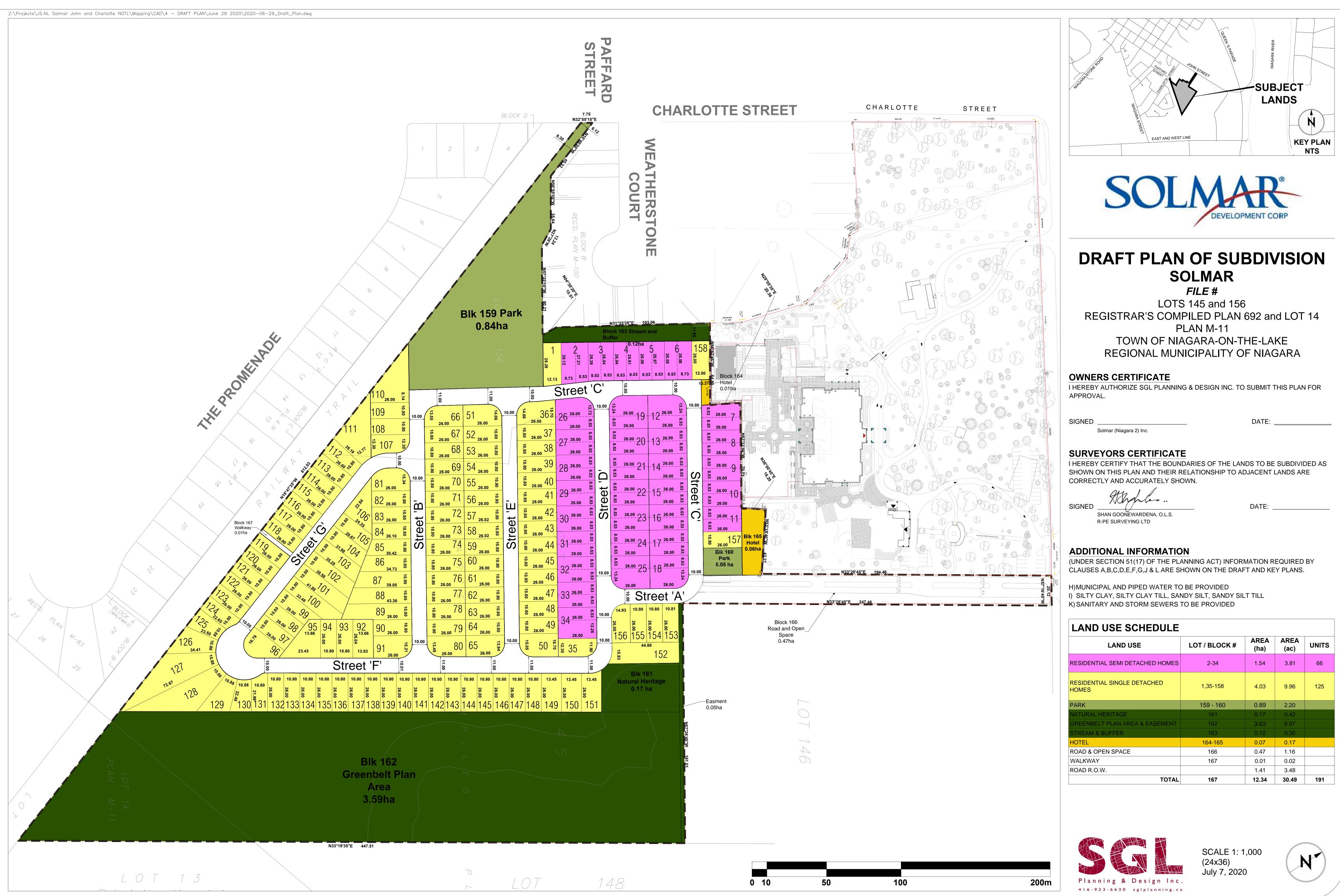

Figures












Appendix A Conceptual Site Plan



Appendix B

**Geotechnical Borehole Logs** 

# JOB NO.: 1807-S136 LOG OF BOREHOLE NO.: 1

FIGURE NO.: 1

PROJECT DESCRIPTION: Proposed Residential Development

METHOD OF BORING: Flight-Auger

DRILLING DATE: August 14. 2018

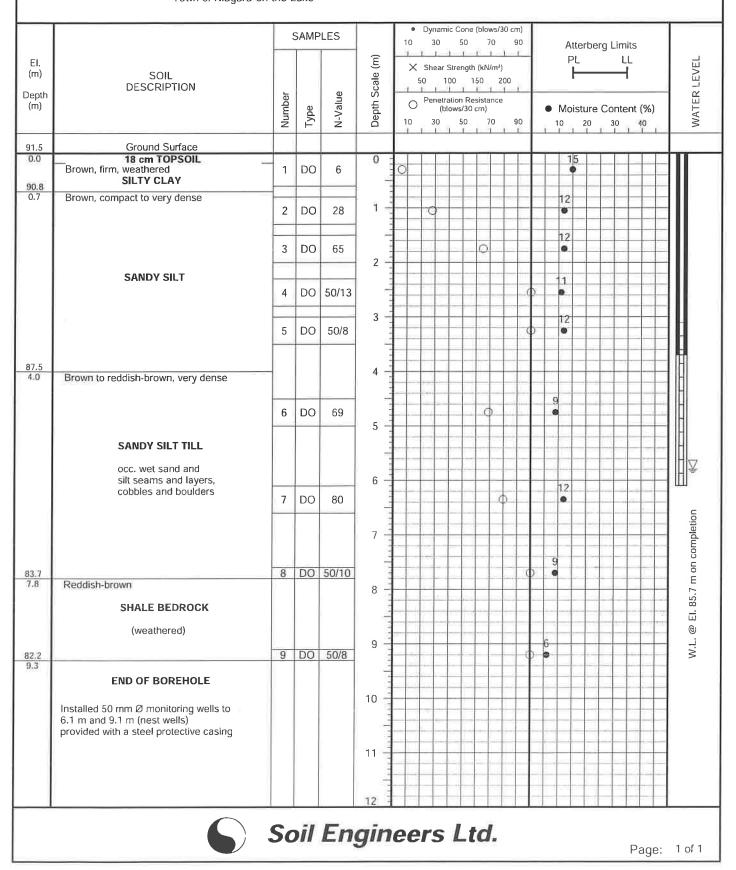
PROJECT LOCATION: 200 John Stree Town of Niagar

200 John Street and 588 Charlotte Street Town of Niagara-on-the-Lake

|                            |                                                                                                                  |        |      |         |                 |   |      |                                             |                                      |         | berg Limits |         |    |         |    |    |                 |
|----------------------------|------------------------------------------------------------------------------------------------------------------|--------|------|---------|-----------------|---|------|---------------------------------------------|--------------------------------------|---------|-------------|---------|----|---------|----|----|-----------------|
| El.<br>(m)<br>0epth<br>(m) | ) SOIL<br>DESCRIPTION                                                                                            |        | Type | N-Value | Depth Scale (m) |   | Shea | r Stren<br>100<br>I I<br>tration<br>blows/3 | gth (kN/<br>150<br>Resista<br>30 cm) | 200<br> |             | ● Ma    |    | e Conte |    | .) | WATER I EVEI    |
| 91.5                       | Ground Surface                                                                                                   | Number |      | 2       |                 |   |      |                                             | 50 70 90                             |         |             | 10      | 20 | 30      | 40 |    |                 |
| 91.5<br>0.0<br>90.8        | Brown, firm, weathered<br>SILTY CLAY                                                                             | 1      | DO   | 6       | 0 -             | 0 |      |                                             |                                      |         |             |         | 5  |         |    |    | Π               |
| 0.7                        | Brown, compact to very dense                                                                                     | 2      | DO   | 28      | 1 -             |   | 0    |                                             |                                      |         |             | 12<br>• |    |         |    |    |                 |
|                            |                                                                                                                  | 3      | DO   | 65      | 2 —             |   |      |                                             | 0                                    |         |             | 12      |    |         |    |    |                 |
|                            | SANDY SILT                                                                                                       | 4      | DO   | 50/13   |                 |   |      |                                             |                                      |         | 0           | 11      |    |         |    |    |                 |
|                            |                                                                                                                  | 5      | DO   | 50/8    | 3 -             |   |      |                                             |                                      |         | 0           | 12<br>• |    |         |    |    |                 |
| 37.5<br>4.0                | Brown to reddish-brown, very dense                                                                               |        |      |         | 4 -             |   |      |                                             |                                      |         |             |         |    |         |    |    |                 |
|                            |                                                                                                                  | 6      | DO   | 69      | 5 –             |   |      |                                             |                                      |         |             | 9       |    |         |    |    |                 |
|                            | SANDY SILT TILL<br>occ. wet sand and<br>silt seams and layers,                                                   |        |      |         | 6 —             |   |      |                                             |                                      |         |             |         |    |         |    |    | Į               |
|                            | cobbles and boulders                                                                                             | 7      | DO   | 80      |                 |   |      |                                             |                                      | •       |             | 12      |    |         |    |    | tion            |
| 33.7                       |                                                                                                                  | 8      |      | 50/10   | 7               |   |      |                                             |                                      |         |             | 9       |    |         |    |    | on completion   |
| 7.8                        | Reddish-brown SHALE BEDROCK                                                                                      |        |      | 30/10   | 8 -             |   |      |                                             |                                      |         |             |         |    |         |    |    | HΙE             |
| 32.2                       | (weathered)                                                                                                      | 9      | DO   | 50/8    | 9               |   |      |                                             |                                      |         |             | 6       |    |         |    |    | W.L. @ El. 85.7 |
| <u>32.2</u><br>9.3         | END OF BOREHOLE                                                                                                  |        | -    |         | -               |   |      |                                             |                                      |         |             |         |    |         |    |    | -               |
|                            | Installed 50 mm Ø monitoring wells to<br>6.1 m and 9.1 m (nest wells)<br>provided with a steel protective casing |        |      |         | 10 -            |   |      |                                             |                                      |         |             |         |    |         |    |    |                 |
|                            |                                                                                                                  |        |      |         | 11 -            |   |      |                                             |                                      |         |             |         |    |         |    |    |                 |
|                            |                                                                                                                  |        |      |         | 12 -            |   |      | +                                           |                                      |         |             |         | +  |         | ++ | +  |                 |

#### JOB NO.: 1807-S136

# LOG OF BOREHOLE NO.: 1


FIGURE NO.:

1

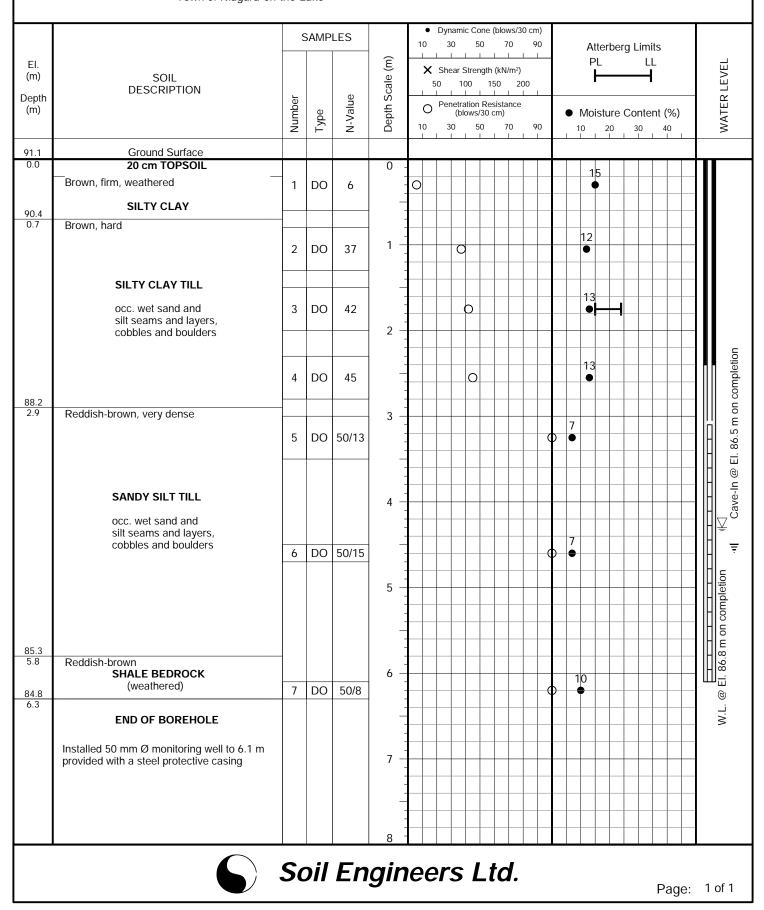
PROJECT DESCRIPTION: Proposed Residential Development

**PROJECT LOCATION:** 200 John Street and 588 Charlotte Street Town of Niagara-on-the-Lake METHOD OF BORING: Flight-Auger

DRILLING DATE: August 14. 2018



# JOB NO.: 1807-S136 LOG OF BOREHOLE NO.: 2


FIGURE NO.: 2

PROJECT DESCRIPTION: Proposed Residential Development

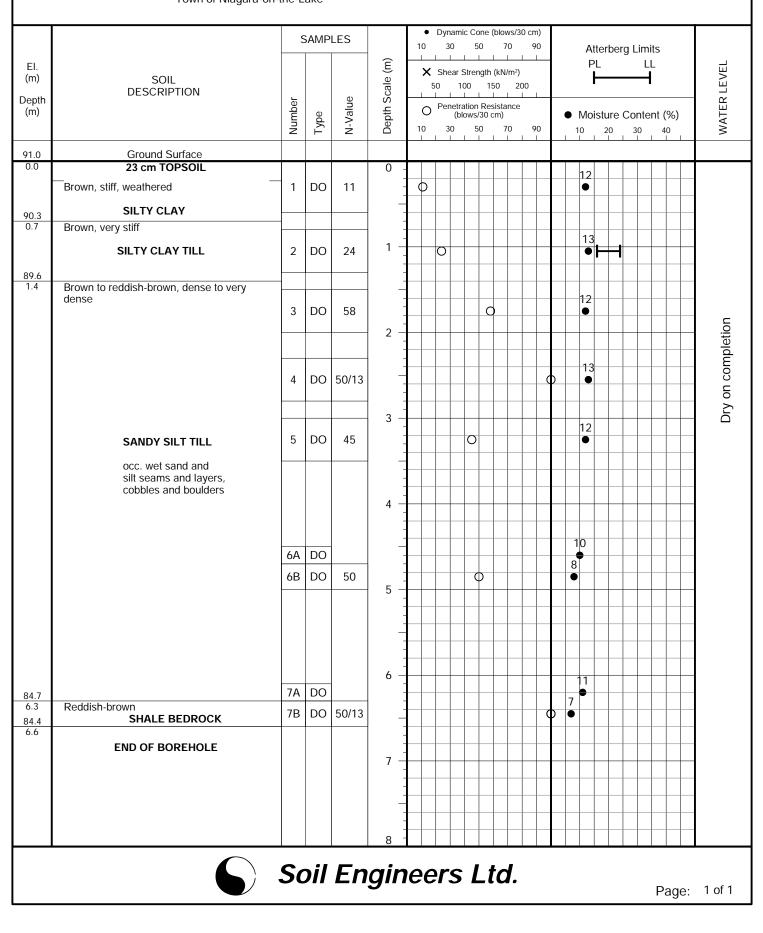
**PROJECT LOCATION:** 200 John Street and 588 Charlotte Street Town of Niagara-on-the-Lake

*METHOD OF BORING:* Flight-Auger

DRILLING DATE: August 14. 2018



#### JOB NO.: 1807-S136


# LOG OF BOREHOLE NO.: 3

PROJECT DESCRIPTION: Proposed Residential Development

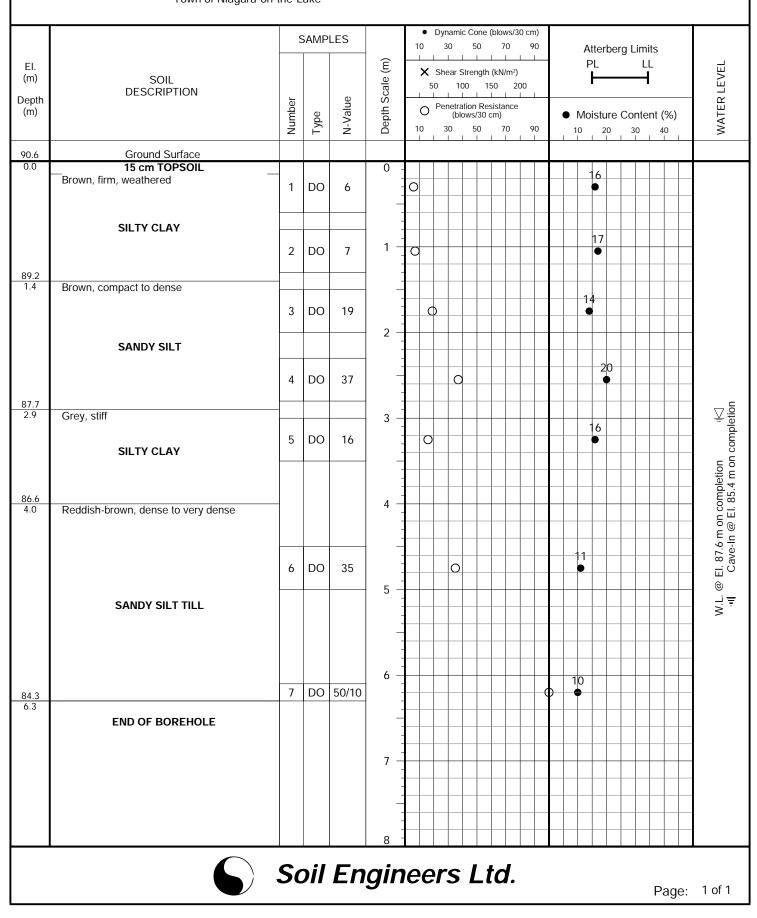
**PROJECT LOCATION:** 200 John Street and 588 Charlotte Street Town of Niagara-on-the-Lake

**METHOD OF BORING:** Flight-Auger

DRILLING DATE: August 14. 2018



#### LOG OF BOREHOLE NO.: 4 JOB NO.: 1807-S136


4 FIGURE NO .:

PROJECT DESCRIPTION: Proposed Residential Development

**PROJECT LOCATION:** 200 John Street and 588 Charlotte Street Town of Niagara-on-the-Lake

METHOD OF BORING: Flight-Auger

DRILLING DATE: August 16. 2018

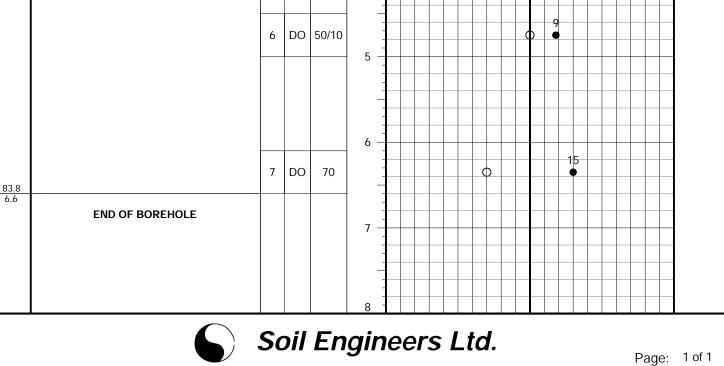


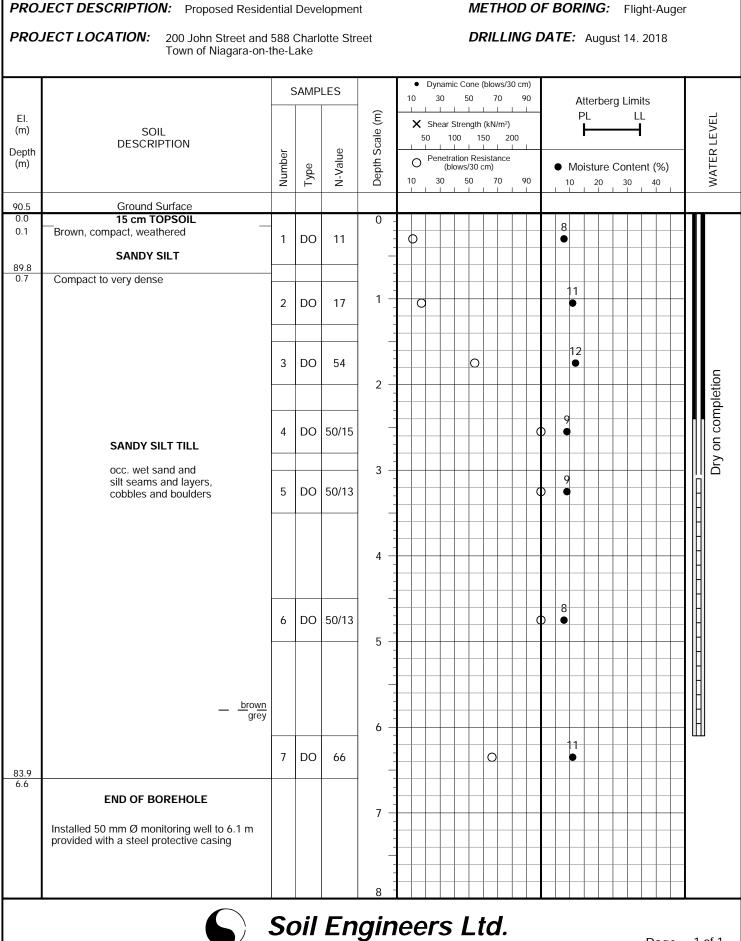
#### **PROJECT LOCATION:** DRILLING DATE: August 16. 2018 200 John Street and 588 Charlotte Street Town of Niagara-on-the-Lake Dynamic Cone (blows/30 cm) • SAMPLES 10 30 50 70 90 Atterberg Limits 1 Depth Scale (m) ΡL LL WATER LEVEL EI. X Shear Strength (kN/m<sup>2</sup>) -(m) SOIL 100 150 50 200 DESCRIPTION Depth Number N-Value Penetration Resistance Ο (m) Type (blows/30 cm) Moisture Content (%) 70 10 30 50 90 10 20 30 40 90.4 Ground Surface 0.0 10 cm TOPSOIL 0 12 1 DO 12 h • Brown, stiff to very stiff weathered SILTY CLAY 17 1 2 DO 21 ന 89.0 1.4 Brown, very dense 1 3 DO 50/13 SANDY SILT Dry on completion 2 88.3 Brown, hard 2.1 10 4 DO 50/13 SILTY CLAY brown 3 grey 10 occ. wet sand and 5 DO 50/13 silt seams and layers 86.4 4 4.0 Reddish-brown, very dense 1 DO 50/13 6 5 SANDY SILT TILL occ. wet sand and silt seams and layers, cobbles and boulders 6 8 DO 50/13 7 • 83.8 6.6 END OF BOREHOLE 7 8 Soil Engineers Ltd.

LOG OF BOREHOLE NO.: 5

Page: 1 of 1

# FIGURE NO .:


5


PROJECT DESCRIPTION: Proposed Residential Development

JOB NO.: 1807-S136

METHOD OF BORING: Flight-Auger

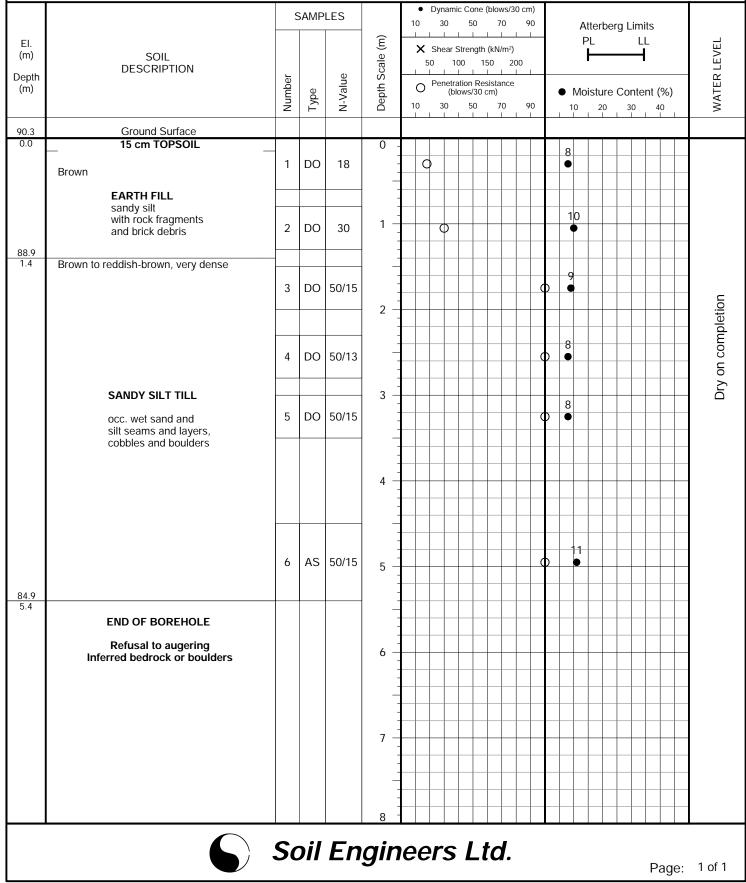
#### LOG OF BOREHOLE NO.: 6 FIGURE NO .: 6 JOB NO.: 1807-S136 PROJECT DESCRIPTION: Proposed Residential Development METHOD OF BORING: Flight-Auger **PROJECT LOCATION:** DRILLING DATE: August 15. 2018 200 John Street and 588 Charlotte Street Town of Niagara-on-the-Lake Dynamic Cone (blows/30 cm) • SAMPLES 10 30 50 70 90 Atterberg Limits 1 Depth Scale (m) ΡL LL WATER LEVEL EI. X Shear Strength (kN/m<sup>2</sup>) (m) -SOIL 50 100 150 200 DESCRIPTION N-Value Depth Number Penetration Resistance Ο (m) Type (blows/30 cm) Moisture Content (%) 10 30 70 50 90 10 20 30 40 90.4 Ground Surface 0.0 8 cm TOPSOIL 0 10 1 DO 16 0 Brown, compact to dense SANDY SILT 10 1 DO 2 50 D 89.0 1.4 Brown, very dense 133 DO 62 h • Dry on completion 2 13 DO 50/10 4 • 3 13 5 DO 50/13 -SANDY SILT TILL occ. wet sand and silt seams and layers, cobbles and boulders 4 DO 50/10 6 5





LOG OF BOREHOLE NO.: 7

Page: 1 of 1


#### 7 FIGURE NO .:

JOB NO.: 1807-S136

### LOG OF BOREHOLE NO.: 8 JOB NO.: 1807-S136 PROJECT DESCRIPTION: Proposed Residential Development **PROJECT LOCATION:** 200 John Street and 588 Charlotte Street Town of Niagara-on-the-Lake Dynamic Cone (blows/30 cm) •

METHOD OF BORING: Flight-Auger

DRILLING DATE: August 15. 2018



#### PROJECT DESCRIPTION: Proposed Residential Development METHOD OF BORING: Flight-Auger **PROJECT LOCATION:** DRILLING DATE: August 16. 2018 200 John Street and 588 Charlotte Street Town of Niagara-on-the-Lake Dynamic Cone (blows/30 cm) • SAMPLES 10 30 50 70 90 Atterberg Limits Depth Scale (m) ΡL LL WATER LEVEL EI. X Shear Strength (kN/m<sup>2</sup>) (m) -SOIL 100 150 50 200 DESCRIPTION N-Value Depth Number Penetration Resistance Ο (m) Type (blows/30 cm) Moisture Content (%) 70 10 30 50 90 10 20 30 40 Ground Surface 90.1 0.0 18 cm TOPSOIL 0 1 1 DO 9 Q Brown, loose to dense weathered 15 1 DO 2 21 ന SANDY SILT 15 3 DO 32 b 2 88.0 $\overline{\Delta}$ 2.1 Brown, dense 27 SANDY SILT TILL 4 DO 36 Ο • 88.0 m on completion 87.2 2.9 Grey, hard 3 10 5 DO 73 O Ξ. 4 SILTY CLAY TILL B V.L. occ. wet sand and silt seams and layer, 1 cobbles and boulders DO 37 0 6 5 84.3 5.8 Reddish-brown, very dense 6 SANDY SILT TILL 7 DO 50/13 83.5 6.6 END OF BOREHOLE 7 8 Soil Engineers Ltd. Page: 1 of 1

LOG OF BOREHOLE NO.: 9

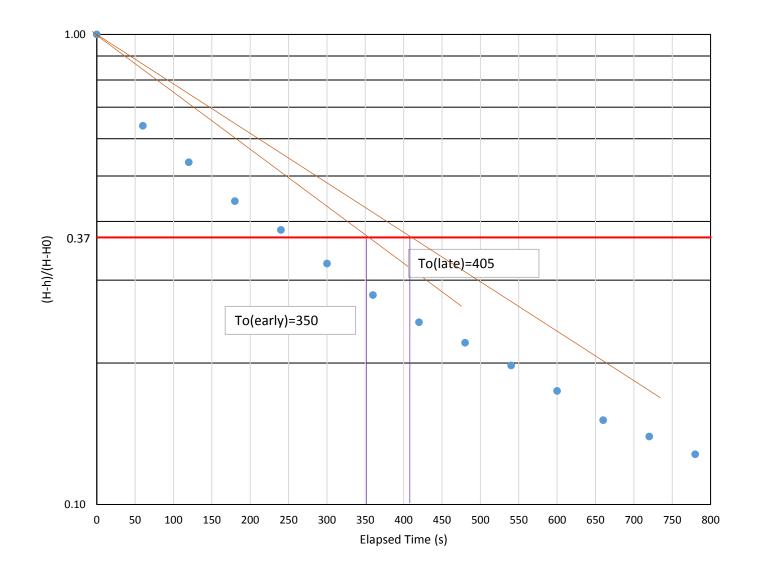
JOB NO.: 1807-S136

9

FIGURE NO .:

Appendix C

Hydraulic Conductivity Calculations


## 200 John Street and 588 Charlott Street In-Situ Hydraulic Conductivity Analyses - MW1D (Falling Head Test)

Date:

6-Nov-18

| Conducted By:               | JM                |             | To(early):       | 350      | S            |
|-----------------------------|-------------------|-------------|------------------|----------|--------------|
| Well Depth:                 |                   | mbtor       | K(early):        | 1.09E-06 | m/s          |
| Screened Unit:              | Silty Clay        |             | To(late):        | 405      | S            |
| Initial Water Level:        | 16.53             | mbtor       | K(late):         | 9.40E-07 | m/s          |
| Available Drawdown (H):     |                   | m           | K(average)       | 1.0E-06  | m/s          |
| Head at Time = 0 (Ho):      | 5.6               | m           | Recovery:        | 94.2%    | %            |
| Screen Length (L):          | 3                 | m           |                  |          |              |
| Borehole Radius (R):        | 0.0775            | m           |                  |          |              |
| Monitoring Well Radius (r): | 0.025             | m           |                  |          |              |
| Stick Up                    |                   | m           |                  |          |              |
| Elenand Time (a)            | \\/otor   /       | avol (mtor) | ЦЬ               |          |              |
| Elapsed Time (s)            |                   | evel (mtor) | H-h              | H-Ho     | (H-h)/(H-Ho) |
| 0                           | 16.78             |             | 0.258            | 0.258    | 1.000        |
| 60                          | 16.69             |             | 0.165            | 0.258    | 0.640        |
| 120                         | 16.6              |             | 0.138            | 0.258    | 0.535        |
| 180                         | 16.64             |             | 0.114            | 0.258    | 0.442        |
| 240                         | 16.62             |             | 0.099            | 0.258    | 0.384        |
| 300                         | 16.6              |             | 0.084            | 0.258    | 0.326        |
| 360                         | 16.60             |             | 0.072            | 0.258    | 0.279        |
| 420                         | 16.5              |             | 0.063            | 0.258    | 0.244        |
| 480                         | 16.58             |             | 0.057            | 0.258    | 0.221        |
| 540                         | 16.58             |             | 0.051            | 0.258    | 0.198        |
| 600                         | 16.5              |             | 0.045            | 0.258    | 0.174        |
| 660                         | 16.50             |             | 0.039            | 0.258    | 0.151        |
| 720                         | 16.50             |             | 0.036            | 0.258    | 0.140        |
| 780                         | 16.50             |             | 0.033            | 0.258    | 0.128        |
| 840                         | 16.               |             | 0.030            | 0.258    | 0.116        |
| 900                         | 16.5              |             | 0.027            | 0.258    | 0.105        |
| 960                         | 16.5              |             | 0.027            | 0.258    | 0.105        |
| 1020                        | 16.5              |             | 0.024            | 0.258    | 0.093        |
| 1080                        | 16.5              |             | 0.021            | 0.258    | 0.081        |
| 1140                        | 16.5              |             | 0.021            | 0.258    | 0.081        |
| 1200                        | 16.54             |             | 0.018            | 0.258    | 0.070        |
| 1260                        | 16.54             |             | 0.018            | 0.258    | 0.070        |
| 1320                        | 16.54             |             | 0.015            | 0.258    | 0.058        |
| 1380                        | 16.54             |             | 0.015            | 0.258    | 0.058        |
| 1440                        | 16.4              |             | -0.114           | 0.258    | -0.442       |
| 1500                        | 16.3 <sup>-</sup> |             | -0.216           | 0.258    | -0.837       |
| 1560                        | 16.3              |             | -0.171<br>-0.141 | 0.258    | -0.663       |
| 1620                        |                   | 16.389      |                  | 0.258    | -0.547       |
| 1680                        |                   | 16.416      |                  | 0.258    | -0.442       |
| 1740                        | 16.43             |             | -0.096           | 0.258    | -0.372       |
| 1800                        | 16.44             |             | -0.081           | 0.258    | -0.314       |
| 1860                        | 16.46             |             | -0.069           | 0.258    | -0.267       |
| 1920                        | 16.4              |             | -0.057           | 0.258    | -0.221       |
| 1980                        | 16.4              |             | -0.051           | 0.258    | -0.198       |
| 2040                        | 16.48             |             | -0.042           | 0.258    | -0.163       |
| 2100                        | 16.49             | 94          | -0.036           | 0.258    | -0.140       |
|                             |                   | State       |                  |          |              |

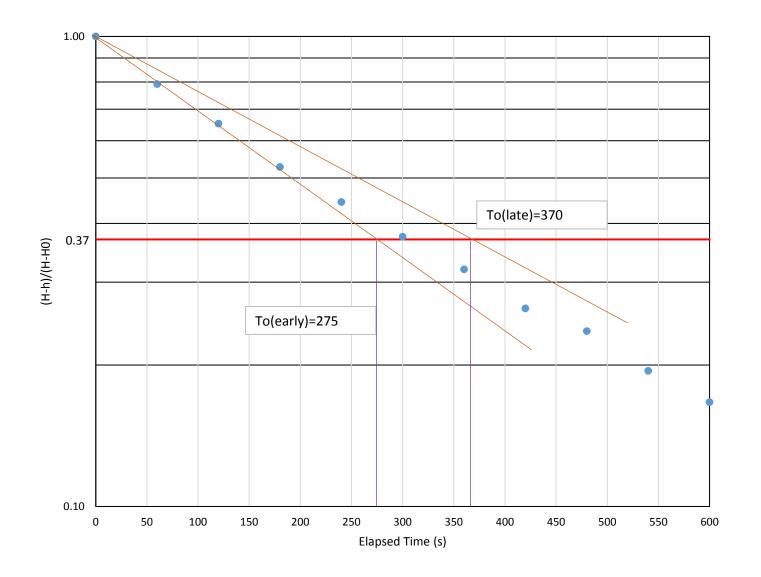




# In-Situ Hydraulic Conductivity Analyses - MW1D (Falling Head)



## 200 John Street and 588 Charlott Street In-Situ Hydraulic Conductivity Analyses - MW1D (Rising Head Test)


Date:

23-Aug-18

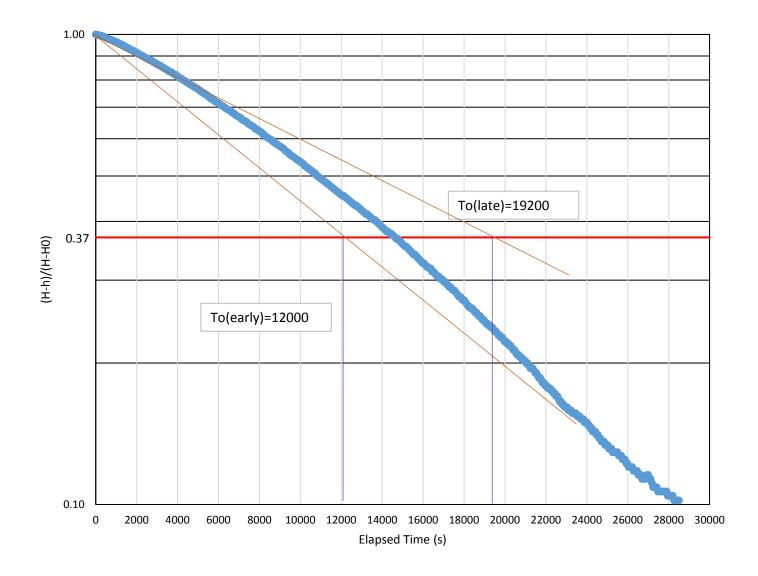
| Conducted By:               | JM            |             | To(early): | 275      | S            |
|-----------------------------|---------------|-------------|------------|----------|--------------|
| Well Depth:                 |               | mbtor       | K(early):  | 1.38E-06 | m/s          |
| Screened Unit:              | Silty Clay    |             | To(late):  | 370      | S            |
| Initial Water Level:        | 16.53         | mbtor       | K(late):   | 1.03E-06 | m/s          |
| Available Drawdown (H):     |               | m           | K(average) | 1.2E-06  | m/s          |
| Head at Time = 0 (Ho):      | 5.6           | m           | Recovery:  | 100.0%   | %            |
| Screen Length (L):          | 3             | m           | <b>*</b>   |          |              |
| Borehole Radius (R):        | 0.0775        | m           |            |          |              |
| Monitoring Well Radius (r): | 0.025         | m           |            |          |              |
| Stick Up                    |               | m           |            |          |              |
| Elapsed Time (s)            | Water Le      | evel (mtor) | H-h        | H-Ho     | (H-h)/(H-Ho) |
| 0                           | 16.3 <i>′</i> | 14          | -0.216     | -0.216   | 1.000        |
| 60                          | 16.35         | 59          | -0.171     | -0.216   | 0.792        |
| 120                         | 16.38         | 39          | -0.141     | -0.216   | 0.653        |
| 180                         | 16.4 <i>1</i> | 16          | -0.114     | -0.216   | 0.528        |
| 240                         | 16.43         | 34          | -0.096     | -0.216   | 0.444        |
| 300                         | 16.44         | 19          | -0.081     | -0.216   | 0.375        |
| 360                         | 16.46         | 61          | -0.069     | -0.216   | 0.319        |
| 420                         | 16.47         | 73          | -0.057     | -0.216   | 0.264        |
| 480                         | 16.47         | 79          | -0.051     | -0.216   | 0.236        |
| 540                         | 16.48         | 38          | -0.042     | -0.216   | 0.194        |
| 600                         | 16.49         | 94          | -0.036     | -0.216   | 0.167        |
| 660                         | 16.49         | 94          | -0.036     | -0.216   | 0.167        |
| 720                         | 16            | .5          | -0.030     | -0.216   | 0.139        |
| 780                         | 16.50         | )3          | -0.027     | -0.216   | 0.125        |
| 840                         | 16.50         | 06          | -0.024     | -0.216   | 0.111        |
| 900                         | 16.50         | )9          | -0.021     | -0.216   | 0.097        |
| 960                         | 16.5 <i>°</i> | 15          | -0.015     | -0.216   | 0.069        |
| 1020                        | 16.5 <i>°</i> | 12          | -0.018     | -0.216   | 0.083        |
| 1080                        | 16.5 <i>°</i> | 15          | -0.015     | -0.216   | 0.069        |
| 1140                        | 16.5 <i>°</i> | 15          | -0.015     | -0.216   | 0.069        |
| 1200                        | 16.5 <i>°</i> | 18          | -0.012     | -0.216   | 0.056        |
| 1260                        | 16.5 <i>°</i> | 18          | -0.012     | -0.216   | 0.056        |
| 1320                        | 16.5 <i>°</i> | 18          | -0.012     | -0.216   | 0.056        |
| 1380                        | 16.5 <i>°</i> | 18          | -0.012     | -0.216   | 0.056        |
| 1440                        | 16.52         | 21          | -0.009     | -0.216   | 0.042        |
| 1500                        | 16.52         | 21          | -0.009     | -0.216   | 0.042        |
| 1560                        | 16.52         | 21          | -0.009     | -0.216   | 0.042        |
| 1620                        | 16.52         | 24          | -0.006     | -0.216   | 0.028        |
| 1680                        | 16.52         | 24          | -0.006     | -0.216   | 0.028        |
| 1740                        | 16.52         | 24          | -0.006     | -0.216   | 0.028        |
| 1800                        | 16.52         | 27          | -0.003     | -0.216   | 0.014        |
| 1860                        | 16.52         | 27          | -0.003     | -0.216   | 0.014        |
| 1920                        | 16.52         | 27          | -0.003     | -0.216   | 0.014        |
| 1980                        | 16.52         | 27          | -0.003     | -0.216   | 0.014        |
| 2040                        | 16.52         |             | -0.003     | -0.216   | 0.014        |
| 2100                        | 16.5          | 53          | 0.000      | -0.216   | 0.000        |
|                             |               | 5           | COLE       |          |              |

2018-0419





# In-Situ Hydraulic Conductivity Analyses - MW1D (Rising Head)




## 200 John Street and 588 Charlott Street In-Situ Hydraulic Conductivity Analyses - MW2 (Rising Head Test)

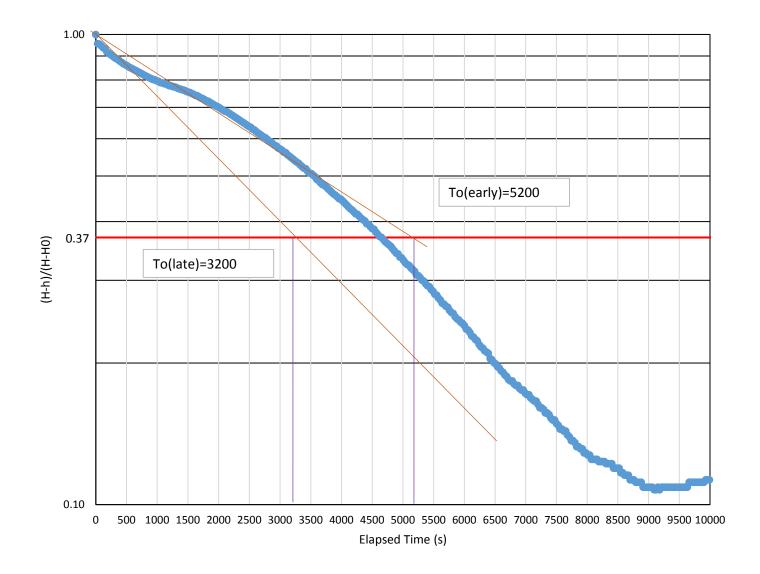
Date:

| Conducted By:               | JM     |             | To(early): | 12000    | s            |
|-----------------------------|--------|-------------|------------|----------|--------------|
| Well Depth:                 |        | mbtor       | K(early):  | 3.17E-08 | m/s          |
| Screened Unit:              |        |             | To(late):  | 19200    | S            |
| Initial Water Level:        | 11.943 | mbtor       | K(late):   | 1.98E-08 | m/s          |
| Available Drawdown (H):     |        | m           | K(average) | 2.5E-08  | m/s          |
| Head at Time = 0 (Ho):      | 5.6    | m           | Recovery:  | 99.8%    | %            |
| Screen Length (L):          | 3      | m           |            |          |              |
| Borehole Radius (R):        | 0.0775 | m           |            |          |              |
| Monitoring Well Radius (r): | 0.025  | m           |            |          |              |
| Stick Up                    |        | m           |            |          |              |
|                             |        |             |            |          |              |
| Elapsed Time (s)            |        | evel (mtor) | H-h        | H-Ho     | (H-h)/(H-Ho) |
| 0                           | 10.6   |             | -1.323     | -1.323   | 1.000        |
| 60                          | 10.62  |             | -1.320     | -1.323   | 0.998        |
| 120                         | 10.62  |             | -1.320     | -1.323   | 0.998        |
| 180                         | 10.62  |             | -1.317     | -1.323   | 0.995        |
| 240                         | 10.62  |             | -1.314     | -1.323   | 0.993        |
| 300                         | 10.62  |             | -1.314     | -1.323   | 0.993        |
| 360                         | 10.63  |             | -1.311     | -1.323   | 0.991        |
| 420                         | 10.63  |             | -1.308     | -1.323   | 0.989        |
| 480                         | 10.63  |             | -1.305     | -1.323   | 0.986        |
| 540                         | 10.64  |             | -1.299     | -1.323   | 0.982        |
| 600                         | 10.64  |             | -1.296     | -1.323   | 0.980        |
| 660                         | 10.6   |             | -1.293     | -1.323   | 0.977        |
| 720                         | 10.65  |             | -1.290     | -1.323   | 0.975        |
| 780                         | 10.65  |             | -1.287     | -1.323   | 0.973        |
| 840                         | 10.65  |             | -1.284     | -1.323   | 0.971        |
| 900                         | 10.66  |             | -1.281     | -1.323   | 0.968        |
| 960                         | 10.66  | 65          | -1.278     | -1.323   | 0.966        |
| 1020                        | 10.66  |             | -1.275     | -1.323   | 0.964        |
| 1080                        | 10.67  | 71          | -1.272     | -1.323   | 0.961        |
| 1140                        | 10.67  | 7           | -1.266     | -1.323   | 0.957        |
| 1200                        | 10.6   | 68          | -1.263     | -1.323   | 0.955        |
| 1260                        | 10.68  | 33          | -1.260     | -1.323   | 0.952        |
| 1320                        | 10.68  | 36          | -1.257     | -1.323   | 0.950        |
| 1380                        | 10.69  | 92          | -1.251     | -1.323   | 0.946        |
| 1440                        | 10.69  | 95          | -1.248     | -1.323   | 0.943        |
| 1500                        | 10.70  | )1          | -1.242     | -1.323   | 0.939        |
| 1560                        | 10.70  | )4          | -1.239     | -1.323   | 0.937        |
| 1620                        | 10.70  | )7          | -1.236     | -1.323   | 0.934        |
| 1680                        | 10.71  | 3           | -1.230     | -1.323   | 0.930        |
| 1740                        | 10.71  | 6           | -1.227     | -1.323   | 0.927        |
| 1800                        | 10.71  | 9           | -1.224     | -1.323   | 0.925        |
| 1860                        | 10.72  | 22          | -1.221     | -1.323   | 0.923        |
| 1920                        | 10.72  | 28          | -1.215     | -1.323   | 0.918        |
| 1980                        | 10.73  | 31          | -1.212     | -1.323   | 0.916        |
| 2040                        | 10.73  | 37          | -1.206     | -1.323   | 0.912        |
| 2100                        | 10.7   | 74          | -1.203     | -1.323   | 0.909        |
|                             |        | Simila      |            |          |              |





## In-Situ Hydraulic Conductivity Analyses - MW2 (Rising Head)




## 200 John Street and 588 Charlott Street In-Situ Hydraulic Conductivity Analyses - MW7 (Falling Head Test)

Date:

23-Aug-18

|                             | _0 / 10.g |             |            |          |                |
|-----------------------------|-----------|-------------|------------|----------|----------------|
| Conducted By:               | AH        |             | To(early): | 5200     | S              |
| Well Depth:                 |           | mbtor       | K(early):  | 4.23E-08 | m/s            |
| Screened Unit:              |           |             | To(late):  | 3200     | S              |
| Initial Water Level:        | 13.266    | mbtor       | K(late):   | 6.87E-08 | m/s            |
| Available Drawdown (H):     |           | m           | K(average) | 5.4E-08  | m/s            |
| Head at Time = 0 (Ho):      | 5.6       | m           | Recovery:  | 99.1%    | %              |
| Screen Length (L):          | 3         | m           |            |          |                |
| Borehole Radius (R):        | 0.0775    | m           |            |          |                |
| Monitoring Well Radius (r): | 0.019     | m           |            |          |                |
| Stick Up                    |           | m           |            |          |                |
| Elapsed Time (s)            | Water Le  | evel (mtor) | H-h        | H-Ho     | (H-h)/(H-Ho)   |
| 0                           | 14.01     | 9           | 0.753      | 0.753    | 1.000          |
| 30                          | 13.98     | 36          | 0.720      | 0.753    | 0.956          |
| 60                          | 13.98     | 34          | 0.718      | 0.753    | 0.954          |
| 90                          | 13.97     | 78          | 0.712      | 0.753    | 0.946          |
| 120                         | 13.97     | 72          | 0.706      | 0.753    | 0.938          |
| 150                         | 13.96     | 68          | 0.702      | 0.753    | 0.932          |
| 180                         | 13.95     | 57          | 0.691      | 0.753    | 0.918          |
| 210                         | 13.95     | 53          | 0.687      | 0.753    | 0.912          |
| 240                         | 13.94     |             | 0.682      | 0.753    | 0.906          |
| 270                         | 13.94     | 14          | 0.678      | 0.753    | 0.900          |
| 300                         | 13.93     |             | 0.673      | 0.753    | 0.894          |
| 330                         | 13.93     |             | 0.669      | 0.753    | 0.888          |
| 360                         | 13.93     |             | 0.666      | 0.753    | 0.884          |
| 390                         | 13.92     |             | 0.661      | 0.753    | 0.878          |
| 420                         | 13.92     |             | 0.657      | 0.753    | 0.873          |
| 450                         | 13.91     |             | 0.652      | 0.753    | 0.866          |
| 480                         | 13.91     |             | 0.649      | 0.753    | 0.862          |
| 510                         | 13.91     |             | 0.646      | 0.753    | 0.858          |
| 540                         | 13.90     |             | 0.642      | 0.753    | 0.853          |
| 570                         | 13.90     |             | 0.639      | 0.753    | 0.849          |
| 600                         | 13.90     |             | 0.636      | 0.753    | 0.845          |
| 630                         | 13.89     |             | 0.633      | 0.753    | 0.841          |
| 660                         | 13.89     |             | 0.630      | 0.753    | 0.837          |
| 690                         | 13.89     |             | 0.627      | 0.753    | 0.833          |
| 720                         | 13.8      |             | 0.624      | 0.753    | 0.829          |
| 750                         | 13.88     |             | 0.621      | 0.753    | 0.825          |
| 780                         | 13.88     |             | 0.618      | 0.753    | 0.821          |
| 810                         | 13.88     |             | 0.615      | 0.753    | 0.817          |
| 840                         | 13.87     |             | 0.612      | 0.753    | 0.813          |
| 870                         | 13.87     |             | 0.609      | 0.753    | 0.809          |
| 900                         | 13.87     |             | 0.607      | 0.753    | 0.806          |
| 930                         | 13.8      |             | 0.604      | 0.753    | 0.802          |
| 960                         | 13.86     |             | 0.603      | 0.753    | 0.801          |
| 990                         | 13.86     |             | 0.600      | 0.753    | 0.797          |
| 1020                        | 13.86     |             | 0.599      | 0.753    | 0.795          |
| 1050                        | 13.86     |             | 0.595      | 0.753    | 0.790          |
|                             |           | Start .     |            |          |                |
| 2018-0419                   |           |             |            | In-situ  | Hydraulic Cond |
|                             |           |             |            |          | -              |



# In-Situ Hydraulic Conductivity Analyses - MW7 (Falling Head)



Appendix D

Water Quality Analysis Results



Your Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Your C.O.C. #: 682753-01-01

#### Attention: Alireza Hejazi

Cole Engineering Group Ltd 70 Valleywood Dr Markham, ON CANADA L3R 4T5

> Report Date: 2018/10/09 Report #: R5433158 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

#### MAXXAM JOB #: B8P6421

#### Received: 2018/09/28, 18:21

Sample Matrix: Water # Samples Received: 1

|                                       |          | Date       | Date       |                              |                    |
|---------------------------------------|----------|------------|------------|------------------------------|--------------------|
| Analyses                              | Quantity | Extracted  | Analyzed   | Laboratory Method            | Reference          |
| Dissolved Aluminum (0.2 u, clay free) | 1        | N/A        | 2018/10/02 | CAM SOP-00447                | EPA 6020B m        |
| Alkalinity                            | 1        | N/A        | 2018/10/04 | CAM SOP-00448                | SM 23 2320 B m     |
| Chromium (VI) in Water                | 1        | N/A        | 2018/10/04 | CAM SOP-00436                | EPA 7199 m         |
| Free (WAD) Cyanide                    | 1        | N/A        | 2018/10/01 | CAM SOP-00457                | OMOE E3015 m       |
| Dissolved Oxygen                      | 1        | 2018/09/29 | 2018/09/29 | CAM SOP-00427                | SM 23 4500 O G m   |
| Hardness (calculated as CaCO3)        | 1        | N/A        | 2018/10/03 | CAM SOP<br>00102/00408/00447 | SM 2340 B          |
| Mercury                               | 1        | 2018/10/04 | 2018/10/04 | CAM SOP-00453                | EPA 7470A m        |
| Total Metals Analysis by ICPMS        | 1        | N/A        | 2018/10/02 | CAM SOP-00447                | EPA 6020B m        |
| Total Ammonia-N                       | 1        | N/A        | 2018/10/05 | CAM SOP-00441                | EPA GS I-2522-90 m |
| рН                                    | 1        | N/A        | 2018/10/04 | CAM SOP-00413                | SM 4500H+ B m      |
| Phenols (4AAP)                        | 1        | N/A        | 2018/10/03 | CAM SOP-00444                | OMOE E3179 m       |
| Field pH (1)                          | 1        | N/A        | 2018/09/28 |                              | Field pH Meter     |
| Sulphide                              | 1        | N/A        | 2018/10/03 | CAM SOP-00455                | SM 23 4500-S G m   |
| Field Temperature (1)                 | 1        | N/A        | 2018/09/28 |                              | Field Thermometer  |
| Total Phosphorus (Colourimetric)      | 1        | 2018/10/02 | 2018/10/03 | CAM SOP-00407                | SM 23 4500 P B H m |
| Turbidity                             | 1        | N/A        | 2018/10/01 | CAM SOP-00417                | SM 23 2130 B m     |
| Un-ionized Ammonia                    | 1        | 2018/09/29 | 2018/10/05 | PWQO                         | PWQO               |

#### Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their

Page 1 of 10



Your Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Your C.O.C. #: 682753-01-01

#### Attention: Alireza Hejazi

Cole Engineering Group Ltd 70 Valleywood Dr Markham, ON CANADA L3R 4T5

> Report Date: 2018/10/09 Report #: R5433158 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

### MAXXAM JOB #: B8P6421

Received: 2018/09/28, 18:21 agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This is a field test, therefore, the results relate to items that were not analysed at Maxxam Analytics Inc.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Jolanta Goralczyk, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905)817-5751

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

## **PWQO METALS AND INORGANICS (WATER)**

| Maxxam ID                        |         | HWT008       |        |          |
|----------------------------------|---------|--------------|--------|----------|
| Sampling Date                    |         | 2018/09/28   |        |          |
|                                  |         | 13:15        |        |          |
| COC Number                       |         | 682753-01-01 |        |          |
|                                  | UNITS   | MW-1D        | RDL    | QC Batch |
| Calculated Parameters            |         |              |        |          |
| Hardness (CaCO3)                 | mg/L    | 310          | 1.0    | 5758768  |
| Total Un-ionized Ammonia         | mg/L    | 0.051        | 0.005  | 5758770  |
| Field Measurements               |         |              |        |          |
| Field Temperature                | Celcius | 14.34        | N/A    | ONSITE   |
| Field pH                         | рН      | 8.54         |        | ONSITE   |
| Inorganics                       |         |              |        |          |
| Total Ammonia-N                  | mg/L    | 0.51         | 0.050  | 5760560  |
| Dissolved Oxygen                 | mg/L    | 8.67         |        | 5759321  |
| рН                               | рН      | 8.21         |        | 5760592  |
| Phenols-4AAP                     | mg/L    | ND           | 0.0010 | 5764253  |
| Total Phosphorus                 | mg/L    | 24           | 0.4    | 5761988  |
| Sulphide                         | mg/L    | 0.20         | 0.020  | 5764591  |
| Turbidity                        | NTU     | 230          | 0.1    | 5757542  |
| WAD Cyanide (Free)               | ug/L    | ND           | 1      | 5760081  |
| Alkalinity (Total as CaCO3)      | mg/L    | 310          | 1.0    | 5760576  |
| Metals                           |         |              |        |          |
| Dissolved (0.2u) Aluminum (Al)   | ug/L    | 5            | 5      | 5760804  |
| Chromium (VI)                    | ug/L    | ND           | 0.50   | 5767547  |
| Mercury (Hg)                     | ug/L    | ND           | 0.1    | 5766584  |
| Total Antimony (Sb)              | ug/L    | ND           | 0.50   | 5760479  |
| Total Arsenic (As)               | ug/L    | 8.4          | 1.0    | 5760479  |
| Total Beryllium (Be)             | ug/L    | ND           | 0.50   | 5760479  |
| Total Boron (B)                  | ug/L    | 230          | 10     | 5760479  |
| Total Cadmium (Cd)               | ug/L    | ND           | 0.10   | 5760479  |
| Total Chromium (Cr)              | ug/L    | ND           | 5.0    | 5760479  |
| Total Cobalt (Co)                | ug/L    | ND           | 0.50   | 5760479  |
| Total Copper (Cu)                | ug/L    | ND           | 1.0    | 5760479  |
| Total Iron (Fe)                  | ug/L    | ND           | 100    | 5760479  |
| RDL = Reportable Detection Limi  | t       |              |        |          |
| QC Batch = Quality Control Batcl | ı       |              |        |          |
| ND = Not detected                |         |              |        |          |
| N/A = Not Applicable             |         |              |        |          |



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

## **PWQO METALS AND INORGANICS (WATER)**

| Maxxam ID                        |       | HWT008              |       |          |  |
|----------------------------------|-------|---------------------|-------|----------|--|
| Sampling Date                    |       | 2018/09/28<br>13:15 |       |          |  |
| COC Number                       |       | 682753-01-01        |       |          |  |
|                                  | UNITS | MW-1D               | RDL   | QC Batch |  |
| Total Lead (Pb)                  | ug/L  | ND                  | 0.50  | 5760479  |  |
| Total Molybdenum (Mo)            | ug/L  | 13                  | 0.50  | 5760479  |  |
| Total Nickel (Ni)                | ug/L  | 1.2                 | 1.0   | 5760479  |  |
| Total Selenium (Se)              | ug/L  | ND                  | 2.0   | 5760479  |  |
| Total Silver (Ag)                | ug/L  | ND                  | 0.10  | 5760479  |  |
| Total Thallium (Tl)              | ug/L  | ND                  | 0.050 | 5760479  |  |
| Total Tungsten (W)               | ug/L  | ND                  | 1.0   | 5760479  |  |
| Total Uranium (U)                | ug/L  | 2.4                 | 0.10  | 5760479  |  |
| Total Vanadium (V)               | ug/L  | 1.1                 | 0.50  | 5760479  |  |
| Total Zinc (Zn)                  | ug/L  | ND                  | 5.0   | 5760479  |  |
| Total Zirconium (Zr)             | ug/L  | ND                  | 1.0   | 5760479  |  |
| RDL = Reportable Detection Limit |       |                     |       |          |  |
| QC Batch = Quality Control Batch |       |                     |       |          |  |
| ND = Not detected                |       |                     |       |          |  |



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

#### **TEST SUMMARY**

| Maxxam ID: | HWT008 |
|------------|--------|
| Sample ID: | MW-1D  |
| Matrix:    | Water  |

| Sample ID: MW-1D<br>Matrix: Water     |                 |         |            |               | Shipped:<br>Received: 2018/09/28 |
|---------------------------------------|-----------------|---------|------------|---------------|----------------------------------|
| Test Description                      | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                          |
| Dissolved Aluminum (0.2 u, clay free) | ICP/MS          | 5760804 | N/A        | 2018/10/02    | Prempal Bhatti                   |
| Alkalinity                            | AT              | 5760576 | N/A        | 2018/10/04    | Surinder Rai                     |
| Chromium (VI) in Water                | IC              | 5767547 | N/A        | 2018/10/04    | Lang Le                          |
| Free (WAD) Cyanide                    | SKAL/CN         | 5760081 | N/A        | 2018/10/01    | Louise Harding                   |
| Dissolved Oxygen                      | DO              | 5759321 | 2018/09/29 | 2018/09/29    | Hinal Shah                       |
| Hardness (calculated as CaCO3)        |                 | 5758768 | N/A        | 2018/10/03    | Automated Statchk                |
| Mercury                               | CV/AA           | 5766584 | 2018/10/04 | 2018/10/04    | Ron Morrison                     |
| Total Metals Analysis by ICPMS        | ICP/MS          | 5760479 | N/A        | 2018/10/02    | Arefa Dabhad                     |
| Total Ammonia-N                       | LACH/NH4        | 5760560 | N/A        | 2018/10/05    | Anastassia Hamanov               |
| рН                                    | AT              | 5760592 | N/A        | 2018/10/04    | Surinder Rai                     |
| Phenols (4AAP)                        | TECH/PHEN       | 5764253 | N/A        | 2018/10/03    | Bramdeo Motiram                  |
| Field pH                              | РН              | ONSITE  | N/A        | 2018/09/28    | Adriana Smith                    |
| Sulphide                              | ISE/S           | 5764591 | N/A        | 2018/10/03    | Gnana Thomas                     |
| Field pH                              | РН              | ONSITE  | N/A        | 2018/09/28    | Adriana Smith                    |
| Total Phosphorus (Colourimetric)      | LACH/P          | 5761988 | 2018/10/02 | 2018/10/03    | Amanpreet Sappal                 |
| Turbidity                             | AT              | 5757542 | N/A        | 2018/10/01    | Neil Dassanayake                 |
| Un-ionized Ammonia                    | CALC/NH3        | 5758770 | 2018/10/05 | 2018/10/05    | Automated Statchk                |

Maxxam ID: HWT008 Dup Sample ID: MW-1D Matrix: Water

| Collected: | 2018/09/28 |
|------------|------------|
| Shipped:   |            |
| Received:  | 2018/09/28 |

**Collected:** 2018/09/28

| Test Description               | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst      |
|--------------------------------|-----------------|---------|------------|---------------|--------------|
| Dissolved Oxygen               | DO              | 5759321 | 2018/09/29 | 2018/09/29    | Hinal Shah   |
| Total Metals Analysis by ICPMS | ICP/MS          | 5760479 | N/A        | 2018/10/02    | Arefa Dabhad |

| Maxxam ID: | HWT094 |
|------------|--------|
| Sample ID: | MW-2   |
| Matrix:    | Water  |

Collected: 2018/09/28 Shipped: Received: 2018/09/28

| Test Description                      | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|---------------------------------------|-----------------|---------|------------|---------------|--------------------|
| Dissolved Aluminum (0.2 u, clay free) | ICP/MS          | 5760804 | N/A        | 2018/10/02    | Prempal Bhatti     |
| Alkalinity                            | AT              | 5759984 | N/A        | 2018/10/04    | Surinder Rai       |
| Chromium (VI) in Water                | IC              | 5767547 | N/A        | 2018/10/04    | Lang Le            |
| Free (WAD) Cyanide                    | SKAL/CN         | 5760081 | N/A        | 2018/10/01    | Louise Harding     |
| Dissolved Oxygen                      | DO              | 5759321 | 2018/09/29 | 2018/09/29    | Hinal Shah         |
| Hardness (calculated as CaCO3)        |                 | 5758768 | N/A        | 2018/10/03    | Automated Statchk  |
| Mercury                               | CV/AA           | 5766584 | 2018/10/04 | 2018/10/04    | Ron Morrison       |
| Total Metals Analysis by ICPMS        | ICP/MS          | 5760479 | N/A        | 2018/10/02    | Arefa Dabhad       |
| Total Ammonia-N                       | LACH/NH4        | 5760560 | N/A        | 2018/10/05    | Anastassia Hamanov |
| рН                                    | AT              | 5759987 | N/A        | 2018/10/04    | Surinder Rai       |
| Phenols (4AAP)                        | TECH/PHEN       | 5762010 | N/A        | 2018/10/02    | Bramdeo Motiram    |
| Field pH                              | РН              | ONSITE  | N/A        | 2018/09/28    | Adriana Smith      |
| Sulphide                              | ISE/S           | 5764591 | N/A        | 2018/10/03    | Gnana Thomas       |

#### Page 5 of 10

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

#### **TEST SUMMARY**

| Maxxam ID:<br>Sample ID:<br>Matrix: | HWT094<br>MW-2<br>Water |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2018/09/28<br>2018/09/28 |
|-------------------------------------|-------------------------|-----------------|---------|------------|---------------|-------------------------------------|--------------------------|
| Test Description                    |                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Field pH                            |                         | PH              | ONSITE  | N/A        | 2018/09/28    | Adriana Sr                          | nith                     |
| Total Phosphorus (Colour            | rimetric)               | LACH/P          | 5761988 | 2018/10/02 | 2018/10/03    | Amanpree                            | t Sappal                 |
| Turbidity                           |                         | AT              | 5757542 | N/A        | 2018/10/01    | Neil Dassa                          | nayake                   |
| Un-ionized Ammonia                  |                         | CALC/NH3        | 5758770 | 2018/10/05 | 2018/10/05    | Automate                            | d Statchk                |



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1

18.3°C

Results relate only to the items tested.



Maxxam Job #: B8P6421 Report Date: 2018/10/09

### QUALITY ASSURANCE REPORT

Cole Engineering Group Ltd Client Project #: 2018-0419

Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

|          |                                |            | Matrix     | Spike     | SPIKED     | BLANK     | Method B         | lank  | RP        | D         | QC Sta     | andard    |
|----------|--------------------------------|------------|------------|-----------|------------|-----------|------------------|-------|-----------|-----------|------------|-----------|
| QC Batch | Parameter                      | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value            | UNITS | Value (%) | QC Limits | % Recovery | QC Limits |
| 5757542  | Turbidity                      | 2018/10/01 |            |           | 101        | 85 - 115  | ND, RDL=0.1      | NTU   | 4.5       | 20        |            |           |
| 5759984  | Alkalinity (Total as CaCO3)    | 2018/10/04 |            |           | 96         | 85 - 115  | ND, RDL=1.0      | mg/L  | 0.64      | 20        |            |           |
| 5759987  | рН                             | 2018/10/04 |            |           | 101        | 98 - 103  |                  |       | 0.24      | N/A       |            |           |
| 5760081  | WAD Cyanide (Free)             | 2018/10/01 | 94         | 80 - 120  | 101        | 80 - 120  | ND,RDL=1         | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Antimony (Sb)            | 2018/10/02 | 100        | 80 - 120  | 98         | 80 - 120  | ND, RDL=0.50     | ug/L  | 2.8       | 20        |            |           |
| 5760479  | Total Arsenic (As)             | 2018/10/02 | 96         | 80 - 120  | 98         | 80 - 120  | ND, RDL=1.0      | ug/L  | 1.5       | 20        |            |           |
| 5760479  | Total Beryllium (Be)           | 2018/10/02 | 93         | 80 - 120  | 97         | 80 - 120  | ND, RDL=0.50     | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Boron (B)                | 2018/10/02 | 89         | 80 - 120  | 96         | 80 - 120  | ND, RDL=10       | ug/L  | 1.4       | 20        |            |           |
| 5760479  | Total Cadmium (Cd)             | 2018/10/02 | 99         | 80 - 120  | 99         | 80 - 120  | ND, RDL=0.10     | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Chromium (Cr)            | 2018/10/02 | 87         | 80 - 120  | 90         | 80 - 120  | ND, RDL=5.0      | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Cobalt (Co)              | 2018/10/02 | 94         | 80 - 120  | 97         | 80 - 120  | ND, RDL=0.50     | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Copper (Cu)              | 2018/10/02 | 94         | 80 - 120  | 95         | 80 - 120  | ND, RDL=1.0      | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Iron (Fe)                | 2018/10/02 | 95         | 80 - 120  | 97         | 80 - 120  | ND, RDL=100      | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Lead (Pb)                | 2018/10/02 | 95         | 80 - 120  | 95         | 80 - 120  | ND, RDL=0.50     | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Molybdenum (Mo)          | 2018/10/02 | 100        | 80 - 120  | 101        | 80 - 120  | ND, RDL=0.50     | ug/L  | 2.8       | 20        |            |           |
| 5760479  | Total Nickel (Ni)              | 2018/10/02 | 87         | 80 - 120  | 92         | 80 - 120  | ND, RDL=1.0      | ug/L  | 9.8       | 20        |            |           |
| 5760479  | Total Selenium (Se)            | 2018/10/02 | 98         | 80 - 120  | 101        | 80 - 120  | ND, RDL=2.0      | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Silver (Ag)              | 2018/10/02 | 92         | 80 - 120  | 91         | 80 - 120  | ND, RDL=0.10     | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Thallium (Tl)            | 2018/10/02 | 92         | 80 - 120  | 92         | 80 - 120  | ND,<br>RDL=0.050 | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Tungsten (W)             | 2018/10/02 | 98         | 80 - 120  | 96         | 80 - 120  | ND, RDL=1.0      | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Uranium (U)              | 2018/10/02 | 97         | 80 - 120  | 94         | 80 - 120  | ND, RDL=0.10     | ug/L  | 2.0       | 20        |            |           |
| 5760479  | Total Vanadium (V)             | 2018/10/02 | 89         | 80 - 120  | 92         | 80 - 120  | ND, RDL=0.50     | ug/L  | 3.7       | 20        |            |           |
| 5760479  | Total Zinc (Zn)                | 2018/10/02 | 96         | 80 - 120  | 101        | 80 - 120  | ND, RDL=5.0      | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Zirconium (Zr)           | 2018/10/02 | 94         | 80 - 120  | 94         | 80 - 120  | ND, RDL=1.0      | ug/L  | NC        | 20        |            |           |
| 5760560  | Total Ammonia-N                | 2018/10/05 | 104        | 75 - 125  | 101        | 80 - 120  | ND,<br>RDL=0.050 | mg/L  | 8.6       | 20        |            |           |
| 5760576  | Alkalinity (Total as CaCO3)    | 2018/10/04 |            |           | 95         | 85 - 115  | ND, RDL=1.0      | mg/L  | 2.0       | 20        |            |           |
| 5760592  | рН                             | 2018/10/04 |            |           | 101        | 98 - 103  |                  |       | 0.51      | N/A       |            |           |
| 5760804  | Dissolved (0.2u) Aluminum (Al) | 2018/10/02 | 104        | 80 - 120  | 103        | 80 - 120  | ND,RDL=5         | ug/L  | 2.5       | 20        |            |           |



Maxxam Job #: B8P6421 Report Date: 2018/10/09

### QUALITY ASSURANCE REPORT(CONT'D)

Cole Engineering Group Ltd Client Project #: 2018-0419

Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

|          |                  |            | Matrix     | Spike     | SPIKED     | BLANK     | Method E          | Blank | RP        | D         | QC Sta     | andard    |
|----------|------------------|------------|------------|-----------|------------|-----------|-------------------|-------|-----------|-----------|------------|-----------|
| QC Batch | Parameter        | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value             | UNITS | Value (%) | QC Limits | % Recovery | QC Limits |
| 5761988  | Total Phosphorus | 2018/10/03 | 103        | 80 - 120  | 90         | 80 - 120  | ND,<br>RDL=0.004  | mg/L  | 4.1       | 20        | 82         | 80 - 120  |
| 5762010  | Phenols-4AAP     | 2018/10/02 | 100        | 80 - 120  | 100        | 80 - 120  | ND,<br>RDL=0.0010 | mg/L  | 6.2       | 20        |            |           |
| 5764253  | Phenols-4AAP     | 2018/10/03 | 99         | 80 - 120  | 100        | 80 - 120  | ND,<br>RDL=0.0010 | mg/L  | NC        | 20        |            |           |
| 5764591  | Sulphide         | 2018/10/03 | 91         | 80 - 120  | 91         | 80 - 120  | ND,<br>RDL=0.020  | mg/L  | NC        | 20        |            |           |
| 5766584  | Mercury (Hg)     | 2018/10/04 | 96         | 75 - 125  | 102        | 80 - 120  | ND, RDL=0.1       | ug/L  | NC        | 20        |            |           |
| 5767547  | Chromium (VI)    | 2018/10/04 | 102        | 80 - 120  | 104        | 80 - 120  | ND, RDL=0.50      | ug/L  | 0.60      | 20        |            |           |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).



Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Your Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Your C.O.C. #: 682753-01-01

#### Attention: Alireza Hejazi

Cole Engineering Group Ltd 70 Valleywood Dr Markham, ON CANADA L3R 4T5

> Report Date: 2018/10/09 Report #: R5433158 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

#### MAXXAM JOB #: B8P6421

#### Received: 2018/09/28, 18:21

Sample Matrix: Water # Samples Received: 1

|                                       |          | Date       | Date       |                              |                    |
|---------------------------------------|----------|------------|------------|------------------------------|--------------------|
| Analyses                              | Quantity | Extracted  | Analyzed   | Laboratory Method            | Reference          |
| Dissolved Aluminum (0.2 u, clay free) | 1        | N/A        | 2018/10/02 | CAM SOP-00447                | EPA 6020B m        |
| Alkalinity                            | 1        | N/A        | 2018/10/04 | CAM SOP-00448                | SM 23 2320 B m     |
| Chromium (VI) in Water                | 1        | N/A        | 2018/10/04 | CAM SOP-00436                | EPA 7199 m         |
| Free (WAD) Cyanide                    | 1        | N/A        | 2018/10/01 | CAM SOP-00457                | OMOE E3015 m       |
| Dissolved Oxygen                      | 1        | 2018/09/29 | 2018/09/29 | CAM SOP-00427                | SM 23 4500 O G m   |
| Hardness (calculated as CaCO3)        | 1        | N/A        | 2018/10/03 | CAM SOP<br>00102/00408/00447 | SM 2340 B          |
| Mercury                               | 1        | 2018/10/04 | 2018/10/04 | CAM SOP-00453                | EPA 7470A m        |
| Total Metals Analysis by ICPMS        | 1        | N/A        | 2018/10/02 | CAM SOP-00447                | EPA 6020B m        |
| Total Ammonia-N                       | 1        | N/A        | 2018/10/05 | CAM SOP-00441                | EPA GS I-2522-90 m |
| рН                                    | 1        | N/A        | 2018/10/04 | CAM SOP-00413                | SM 4500H+ B m      |
| Phenols (4AAP)                        | 1        | N/A        | 2018/10/03 | CAM SOP-00444                | OMOE E3179 m       |
| Field pH (1)                          | 1        | N/A        | 2018/09/28 |                              | Field pH Meter     |
| Sulphide                              | 1        | N/A        | 2018/10/03 | CAM SOP-00455                | SM 23 4500-S G m   |
| Field Temperature (1)                 | 1        | N/A        | 2018/09/28 |                              | Field Thermometer  |
| Total Phosphorus (Colourimetric)      | 1        | 2018/10/02 | 2018/10/03 | CAM SOP-00407                | SM 23 4500 P B H m |
| Turbidity                             | 1        | N/A        | 2018/10/01 | CAM SOP-00417                | SM 23 2130 B m     |
| Un-ionized Ammonia                    | 1        | 2018/09/29 | 2018/10/05 | PWQO                         | PWQO               |

#### Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their

Page 1 of 10



Your Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Your C.O.C. #: 682753-01-01

#### Attention: Alireza Hejazi

Cole Engineering Group Ltd 70 Valleywood Dr Markham, ON CANADA L3R 4T5

> Report Date: 2018/10/09 Report #: R5433158 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

### MAXXAM JOB #: B8P6421

Received: 2018/09/28, 18:21 agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This is a field test, therefore, the results relate to items that were not analysed at Maxxam Analytics Inc.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Jolanta Goralczyk, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905)817-5751

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

## **PWQO METALS AND INORGANICS (WATER)**

| Maxxam ID                                |       | HWT008              |      |          |  |  |  |
|------------------------------------------|-------|---------------------|------|----------|--|--|--|
| Sampling Date                            |       | 2018/09/28<br>13:15 |      |          |  |  |  |
| COC Number                               |       | 682753-01-01        |      |          |  |  |  |
|                                          | UNITS | MW-1D<br>Lab-Dup    | RDL  | QC Batch |  |  |  |
| Inorganics                               |       |                     |      |          |  |  |  |
| Dissolved Oxygen                         | mg/L  | 8.66                |      | 5759321  |  |  |  |
| Metals                                   |       | •                   |      |          |  |  |  |
| Total Antimony (Sb)                      | ug/L  | 0.51                | 0.50 | 5760479  |  |  |  |
| Total Arsenic (As)                       | ug/L  | 8.6                 | 1.0  | 5760479  |  |  |  |
| Total Beryllium (Be)                     | ug/L  | ND                  | 0.50 | 5760479  |  |  |  |
| Total Boron (B)                          | ug/L  | 230                 | 10   | 5760479  |  |  |  |
| Total Cadmium (Cd)                       | ug/L  | ND                  | 0.10 | 5760479  |  |  |  |
| Total Chromium (Cr)                      | ug/L  | ND                  | 5.0  | 5760479  |  |  |  |
| Total Cobalt (Co)                        | ug/L  | ND                  | 0.50 | 5760479  |  |  |  |
| Total Copper (Cu)                        | ug/L  | ND                  | 1.0  | 5760479  |  |  |  |
| Total Iron (Fe)                          | ug/L  | ND                  | 100  | 5760479  |  |  |  |
| RDL = Reportable Detection Limit         |       |                     |      |          |  |  |  |
| QC Batch = Quality Control Batch         |       |                     |      |          |  |  |  |
| Lab-Dup = Laboratory Initiated Duplicate |       |                     |      |          |  |  |  |
| ND = Not detected                        |       |                     |      |          |  |  |  |



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

## **PWQO METALS AND INORGANICS (WATER)**

| Maxxam ID                                |       | HWT008              |       |          |  |  |  |
|------------------------------------------|-------|---------------------|-------|----------|--|--|--|
| Sampling Date                            |       | 2018/09/28<br>13:15 |       |          |  |  |  |
| COC Number                               |       | 682753-01-01        |       |          |  |  |  |
|                                          | UNITS | MW-1D<br>Lab-Dup    | RDL   | QC Batch |  |  |  |
| Total Lead (Pb)                          | ug/L  | ND                  | 0.50  | 5760479  |  |  |  |
| Total Molybdenum (Mo)                    | ug/L  | 13                  | 0.50  | 5760479  |  |  |  |
| Total Nickel (Ni)                        | ug/L  | 1.0                 | 1.0   | 5760479  |  |  |  |
| Total Selenium (Se)                      | ug/L  | ND                  | 2.0   | 5760479  |  |  |  |
| Total Silver (Ag)                        | ug/L  | ND                  | 0.10  | 5760479  |  |  |  |
| Total Thallium (TI)                      | ug/L  | ND                  | 0.050 | 5760479  |  |  |  |
| Total Tungsten (W)                       | ug/L  | ND                  | 1.0   | 5760479  |  |  |  |
| Total Uranium (U)                        | ug/L  | 2.5                 | 0.10  | 5760479  |  |  |  |
| Total Vanadium (V)                       | ug/L  | 1.1                 | 0.50  | 5760479  |  |  |  |
| Total Zinc (Zn)                          | ug/L  | ND                  | 5.0   | 5760479  |  |  |  |
| Total Zirconium (Zr)                     | ug/L  | ND                  | 1.0   | 5760479  |  |  |  |
| RDL = Reportable Detection Limi          | t     |                     |       |          |  |  |  |
| QC Batch = Quality Control Batch         |       |                     |       |          |  |  |  |
| Lab-Dup = Laboratory Initiated Duplicate |       |                     |       |          |  |  |  |
| ND = Not detected                        |       |                     |       |          |  |  |  |



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

#### **TEST SUMMARY**

| Maxxam ID: | HWT008 |
|------------|--------|
| Sample ID: | MW-1D  |
| Matrix:    | Water  |

| Sample ID: MW-1D<br>Matrix: Water     |                 |         |            |               | Shipped:<br>Received: 2018/09/28 |
|---------------------------------------|-----------------|---------|------------|---------------|----------------------------------|
| Test Description                      | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                          |
| Dissolved Aluminum (0.2 u, clay free) | ICP/MS          | 5760804 | N/A        | 2018/10/02    | Prempal Bhatti                   |
| Alkalinity                            | AT              | 5760576 | N/A        | 2018/10/04    | Surinder Rai                     |
| Chromium (VI) in Water                | IC              | 5767547 | N/A        | 2018/10/04    | Lang Le                          |
| Free (WAD) Cyanide                    | SKAL/CN         | 5760081 | N/A        | 2018/10/01    | Louise Harding                   |
| Dissolved Oxygen                      | DO              | 5759321 | 2018/09/29 | 2018/09/29    | Hinal Shah                       |
| Hardness (calculated as CaCO3)        |                 | 5758768 | N/A        | 2018/10/03    | Automated Statchk                |
| Mercury                               | CV/AA           | 5766584 | 2018/10/04 | 2018/10/04    | Ron Morrison                     |
| Total Metals Analysis by ICPMS        | ICP/MS          | 5760479 | N/A        | 2018/10/02    | Arefa Dabhad                     |
| Total Ammonia-N                       | LACH/NH4        | 5760560 | N/A        | 2018/10/05    | Anastassia Hamanov               |
| рН                                    | AT              | 5760592 | N/A        | 2018/10/04    | Surinder Rai                     |
| Phenols (4AAP)                        | TECH/PHEN       | 5764253 | N/A        | 2018/10/03    | Bramdeo Motiram                  |
| Field pH                              | РН              | ONSITE  | N/A        | 2018/09/28    | Adriana Smith                    |
| Sulphide                              | ISE/S           | 5764591 | N/A        | 2018/10/03    | Gnana Thomas                     |
| Field pH                              | РН              | ONSITE  | N/A        | 2018/09/28    | Adriana Smith                    |
| Total Phosphorus (Colourimetric)      | LACH/P          | 5761988 | 2018/10/02 | 2018/10/03    | Amanpreet Sappal                 |
| Turbidity                             | AT              | 5757542 | N/A        | 2018/10/01    | Neil Dassanayake                 |
| Un-ionized Ammonia                    | CALC/NH3        | 5758770 | 2018/10/05 | 2018/10/05    | Automated Statchk                |

Maxxam ID: HWT008 Dup Sample ID: MW-1D Matrix: Water

| Collected: | 2018/09/28 |
|------------|------------|
| Shipped:   |            |
| Received:  | 2018/09/28 |

**Collected:** 2018/09/28

| Test Description               | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst      |
|--------------------------------|-----------------|---------|------------|---------------|--------------|
| Dissolved Oxygen               | DO              | 5759321 | 2018/09/29 | 2018/09/29    | Hinal Shah   |
| Total Metals Analysis by ICPMS | ICP/MS          | 5760479 | N/A        | 2018/10/02    | Arefa Dabhad |

| Maxxam ID: | HWT094 |
|------------|--------|
| Sample ID: | MW-2   |
| Matrix:    | Water  |

Collected: 2018/09/28 Shipped: Received: 2018/09/28

| Test Description                      | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|---------------------------------------|-----------------|---------|------------|---------------|--------------------|
| Dissolved Aluminum (0.2 u, clay free) | ICP/MS          | 5760804 | N/A        | 2018/10/02    | Prempal Bhatti     |
| Alkalinity                            | AT              | 5759984 | N/A        | 2018/10/04    | Surinder Rai       |
| Chromium (VI) in Water                | IC              | 5767547 | N/A        | 2018/10/04    | Lang Le            |
| Free (WAD) Cyanide                    | SKAL/CN         | 5760081 | N/A        | 2018/10/01    | Louise Harding     |
| Dissolved Oxygen                      | DO              | 5759321 | 2018/09/29 | 2018/09/29    | Hinal Shah         |
| Hardness (calculated as CaCO3)        |                 | 5758768 | N/A        | 2018/10/03    | Automated Statchk  |
| Mercury                               | CV/AA           | 5766584 | 2018/10/04 | 2018/10/04    | Ron Morrison       |
| Total Metals Analysis by ICPMS        | ICP/MS          | 5760479 | N/A        | 2018/10/02    | Arefa Dabhad       |
| Total Ammonia-N                       | LACH/NH4        | 5760560 | N/A        | 2018/10/05    | Anastassia Hamanov |
| рН                                    | AT              | 5759987 | N/A        | 2018/10/04    | Surinder Rai       |
| Phenols (4AAP)                        | TECH/PHEN       | 5762010 | N/A        | 2018/10/02    | Bramdeo Motiram    |
| Field pH                              | РН              | ONSITE  | N/A        | 2018/09/28    | Adriana Smith      |
| Sulphide                              | ISE/S           | 5764591 | N/A        | 2018/10/03    | Gnana Thomas       |

#### Page 5 of 10

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

#### **TEST SUMMARY**

| Maxxam ID:<br>Sample ID:<br>Matrix: | HWT094<br>MW-2<br>Water |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2018/09/28<br>2018/09/28 |
|-------------------------------------|-------------------------|-----------------|---------|------------|---------------|-------------------------------------|--------------------------|
| Test Description                    |                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Field pH                            |                         | PH              | ONSITE  | N/A        | 2018/09/28    | Adriana Sr                          | nith                     |
| Total Phosphorus (Colour            | rimetric)               | LACH/P          | 5761988 | 2018/10/02 | 2018/10/03    | Amanpree                            | t Sappal                 |
| Turbidity                           |                         | AT              | 5757542 | N/A        | 2018/10/01    | Neil Dassa                          | nayake                   |
| Un-ionized Ammonia                  |                         | CALC/NH3        | 5758770 | 2018/10/05 | 2018/10/05    | Automate                            | d Statchk                |



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1

18.3°C

Results relate only to the items tested.



Maxxam Job #: B8P6421 Report Date: 2018/10/09

### QUALITY ASSURANCE REPORT

Cole Engineering Group Ltd Client Project #: 2018-0419

Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

|          |                                |            | Matrix Spike |           | SPIKED BLANK |           | Method Blank     |       | RPD       |           | QC Standard |           |
|----------|--------------------------------|------------|--------------|-----------|--------------|-----------|------------------|-------|-----------|-----------|-------------|-----------|
| QC Batch | Parameter                      | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value            | UNITS | Value (%) | QC Limits | % Recovery  | QC Limits |
| 5757542  | Turbidity                      | 2018/10/01 |              |           | 101          | 85 - 115  | ND, RDL=0.1      | NTU   | 4.5       | 20        |             |           |
| 5759984  | Alkalinity (Total as CaCO3)    | 2018/10/04 |              |           | 96           | 85 - 115  | ND, RDL=1.0      | mg/L  | 0.64      | 20        |             |           |
| 5759987  | рН                             | 2018/10/04 |              |           | 101          | 98 - 103  |                  |       | 0.24      | N/A       |             |           |
| 5760081  | WAD Cyanide (Free)             | 2018/10/01 | 94           | 80 - 120  | 101          | 80 - 120  | ND,RDL=1         | ug/L  | NC        | 20        |             |           |
| 5760479  | Total Antimony (Sb)            | 2018/10/02 | 100          | 80 - 120  | 98           | 80 - 120  | ND, RDL=0.50     | ug/L  | 2.8       | 20        |             |           |
| 5760479  | Total Arsenic (As)             | 2018/10/02 | 96           | 80 - 120  | 98           | 80 - 120  | ND, RDL=1.0      | ug/L  | 1.5       | 20        |             |           |
| 5760479  | Total Beryllium (Be)           | 2018/10/02 | 93           | 80 - 120  | 97           | 80 - 120  | ND, RDL=0.50     | ug/L  | NC        | 20        |             |           |
| 5760479  | Total Boron (B)                | 2018/10/02 | 89           | 80 - 120  | 96           | 80 - 120  | ND, RDL=10       | ug/L  | 1.4       | 20        |             |           |
| 5760479  | Total Cadmium (Cd)             | 2018/10/02 | 99           | 80 - 120  | 99           | 80 - 120  | ND, RDL=0.10     | ug/L  | NC        | 20        |             |           |
| 5760479  | Total Chromium (Cr)            | 2018/10/02 | 87           | 80 - 120  | 90           | 80 - 120  | ND, RDL=5.0      | ug/L  | NC        | 20        |             |           |
| 5760479  | Total Cobalt (Co)              | 2018/10/02 | 94           | 80 - 120  | 97           | 80 - 120  | ND, RDL=0.50     | ug/L  | NC        | 20        |             |           |
| 5760479  | Total Copper (Cu)              | 2018/10/02 | 94           | 80 - 120  | 95           | 80 - 120  | ND, RDL=1.0      | ug/L  | NC        | 20        |             |           |
| 5760479  | Total Iron (Fe)                | 2018/10/02 | 95           | 80 - 120  | 97           | 80 - 120  | ND, RDL=100      | ug/L  | NC        | 20        |             |           |
| 5760479  | Total Lead (Pb)                | 2018/10/02 | 95           | 80 - 120  | 95           | 80 - 120  | ND, RDL=0.50     | ug/L  | NC        | 20        |             |           |
| 5760479  | Total Molybdenum (Mo)          | 2018/10/02 | 100          | 80 - 120  | 101          | 80 - 120  | ND, RDL=0.50     | ug/L  | 2.8       | 20        |             |           |
| 5760479  | Total Nickel (Ni)              | 2018/10/02 | 87           | 80 - 120  | 92           | 80 - 120  | ND, RDL=1.0      | ug/L  | 9.8       | 20        |             |           |
| 5760479  | Total Selenium (Se)            | 2018/10/02 | 98           | 80 - 120  | 101          | 80 - 120  | ND, RDL=2.0      | ug/L  | NC        | 20        |             |           |
| 5760479  | Total Silver (Ag)              | 2018/10/02 | 92           | 80 - 120  | 91           | 80 - 120  | ND, RDL=0.10     | ug/L  | NC        | 20        |             |           |
| 5760479  | Total Thallium (Tl)            | 2018/10/02 | 92           | 80 - 120  | 92           | 80 - 120  | ND,<br>RDL=0.050 | ug/L  | NC        | 20        |             |           |
| 5760479  | Total Tungsten (W)             | 2018/10/02 | 98           | 80 - 120  | 96           | 80 - 120  | ND, RDL=1.0      | ug/L  | NC        | 20        |             |           |
| 5760479  | Total Uranium (U)              | 2018/10/02 | 97           | 80 - 120  | 94           | 80 - 120  | ND, RDL=0.10     | ug/L  | 2.0       | 20        |             |           |
| 5760479  | Total Vanadium (V)             | 2018/10/02 | 89           | 80 - 120  | 92           | 80 - 120  | ND, RDL=0.50     | ug/L  | 3.7       | 20        |             |           |
| 5760479  | Total Zinc (Zn)                | 2018/10/02 | 96           | 80 - 120  | 101          | 80 - 120  | ND, RDL=5.0      | ug/L  | NC        | 20        |             |           |
| 5760479  | Total Zirconium (Zr)           | 2018/10/02 | 94           | 80 - 120  | 94           | 80 - 120  | ND, RDL=1.0      | ug/L  | NC        | 20        |             |           |
| 5760560  | Total Ammonia-N                | 2018/10/05 | 104          | 75 - 125  | 101          | 80 - 120  | ND,<br>RDL=0.050 | mg/L  | 8.6       | 20        |             |           |
| 5760576  | Alkalinity (Total as CaCO3)    | 2018/10/04 |              |           | 95           | 85 - 115  | ND, RDL=1.0      | mg/L  | 2.0       | 20        |             |           |
| 5760592  | рН                             | 2018/10/04 |              |           | 101          | 98 - 103  |                  |       | 0.51      | N/A       |             |           |
| 5760804  | Dissolved (0.2u) Aluminum (Al) | 2018/10/02 | 104          | 80 - 120  | 103          | 80 - 120  | ND,RDL=5         | ug/L  | 2.5       | 20        |             |           |



Maxxam Job #: B8P6421 Report Date: 2018/10/09

### QUALITY ASSURANCE REPORT(CONT'D)

Cole Engineering Group Ltd Client Project #: 2018-0419

Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

|          |                  |            | Matrix Spike |           | SPIKED BLANK |           | Method Blank      |       | RPD       |           | QC Standard |           |
|----------|------------------|------------|--------------|-----------|--------------|-----------|-------------------|-------|-----------|-----------|-------------|-----------|
| QC Batch | Parameter        | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value             | UNITS | Value (%) | QC Limits | % Recovery  | QC Limits |
| 5761988  | Total Phosphorus | 2018/10/03 | 103          | 80 - 120  | 90           | 80 - 120  | ND,<br>RDL=0.004  | mg/L  | 4.1       | 20        | 82          | 80 - 120  |
| 5762010  | Phenols-4AAP     | 2018/10/02 | 100          | 80 - 120  | 100          | 80 - 120  | ND,<br>RDL=0.0010 | mg/L  | 6.2       | 20        |             |           |
| 5764253  | Phenols-4AAP     | 2018/10/03 | 99           | 80 - 120  | 100          | 80 - 120  | ND,<br>RDL=0.0010 | mg/L  | NC        | 20        |             |           |
| 5764591  | Sulphide         | 2018/10/03 | 91           | 80 - 120  | 91           | 80 - 120  | ND,<br>RDL=0.020  | mg/L  | NC        | 20        |             |           |
| 5766584  | Mercury (Hg)     | 2018/10/04 | 96           | 75 - 125  | 102          | 80 - 120  | ND, RDL=0.1       | ug/L  | NC        | 20        |             |           |
| 5767547  | Chromium (VI)    | 2018/10/04 | 102          | 80 - 120  | 104          | 80 - 120  | ND, RDL=0.50      | ug/L  | 0.60      | 20        |             |           |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).



Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Your Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Your C.O.C. #: 682753-01-01

#### Attention: Alireza Hejazi

Cole Engineering Group Ltd 70 Valleywood Dr Markham, ON CANADA L3R 4T5

> Report Date: 2018/10/09 Report #: R5433158 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

#### MAXXAM JOB #: B8P6421

#### Received: 2018/09/28, 18:21

Sample Matrix: Water # Samples Received: 1

|                                       |          | Date       | Date       |                              |                    |
|---------------------------------------|----------|------------|------------|------------------------------|--------------------|
| Analyses                              | Quantity | Extracted  | Analyzed   | Laboratory Method            | Reference          |
| Dissolved Aluminum (0.2 u, clay free) | 1        | N/A        | 2018/10/02 | CAM SOP-00447                | EPA 6020B m        |
| Alkalinity                            | 1        | N/A        | 2018/10/04 | CAM SOP-00448                | SM 23 2320 B m     |
| Chromium (VI) in Water                | 1        | N/A        | 2018/10/04 | CAM SOP-00436                | EPA 7199 m         |
| Free (WAD) Cyanide                    | 1        | N/A        | 2018/10/01 | CAM SOP-00457                | OMOE E3015 m       |
| Dissolved Oxygen                      | 1        | 2018/09/29 | 2018/09/29 | CAM SOP-00427                | SM 23 4500 O G m   |
| Hardness (calculated as CaCO3)        | 1        | N/A        | 2018/10/03 | CAM SOP<br>00102/00408/00447 | SM 2340 B          |
| Mercury                               | 1        | 2018/10/04 | 2018/10/04 | CAM SOP-00453                | EPA 7470A m        |
| Total Metals Analysis by ICPMS        | 1        | N/A        | 2018/10/02 | CAM SOP-00447                | EPA 6020B m        |
| Total Ammonia-N                       | 1        | N/A        | 2018/10/05 | CAM SOP-00441                | EPA GS I-2522-90 m |
| рН                                    | 1        | N/A        | 2018/10/04 | CAM SOP-00413                | SM 4500H+ B m      |
| Phenols (4AAP)                        | 1        | N/A        | 2018/10/02 | CAM SOP-00444                | OMOE E3179 m       |
| Field pH (1)                          | 1        | N/A        | 2018/09/28 |                              | Field pH Meter     |
| Sulphide                              | 1        | N/A        | 2018/10/03 | CAM SOP-00455                | SM 23 4500-S G m   |
| Field Temperature (1)                 | 1        | N/A        | 2018/09/28 |                              | Field Thermometer  |
| Total Phosphorus (Colourimetric)      | 1        | 2018/10/02 | 2018/10/03 | CAM SOP-00407                | SM 23 4500 P B H m |
| Turbidity                             | 1        | N/A        | 2018/10/01 | CAM SOP-00417                | SM 23 2130 B m     |
| Un-ionized Ammonia                    | 1        | 2018/09/29 | 2018/10/05 | PWQO                         | PWQO               |

#### Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their

Page 1 of 10



Your Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Your C.O.C. #: 682753-01-01

#### Attention: Alireza Hejazi

Cole Engineering Group Ltd 70 Valleywood Dr Markham, ON CANADA L3R 4T5

> Report Date: 2018/10/09 Report #: R5433158 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

### MAXXAM JOB #: B8P6421

Received: 2018/09/28, 18:21 agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) This is a field test, therefore, the results relate to items that were not analysed at Maxxam Analytics Inc.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Jolanta Goralczyk, Project Manager Email: JGoralczyk@maxxam.ca Phone# (905)817-5751

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

# **PWQO METALS AND INORGANICS (WATER)**

| Maxxam ID                        |         | HWT094       |        |          |
|----------------------------------|---------|--------------|--------|----------|
| Sampling Date                    |         | 2018/09/28   |        |          |
|                                  |         | 13:30        |        |          |
| COC Number                       |         | 682753-01-01 |        |          |
|                                  | UNITS   | MW-2         | RDL    | QC Batch |
| Calculated Parameters            |         |              |        |          |
| Hardness (CaCO3)                 | mg/L    | 380          | 1.0    | 5758768  |
| Total Un-ionized Ammonia         | mg/L    | 0.012        | 0.0024 | 5758770  |
| Field Measurements               | -       |              |        |          |
| Field Temperature                | Celcius | 15.35        | N/A    | ONSITE   |
| Field pH                         | рН      | 8.16         |        | ONSITE   |
| Inorganics                       | -       |              |        |          |
| Total Ammonia-N                  | mg/L    | 0.25         | 0.050  | 5760560  |
| Dissolved Oxygen                 | mg/L    | 8.51         |        | 5759321  |
| рН                               | рН      | 8.18         |        | 5759987  |
| Phenols-4AAP                     | mg/L    | ND           | 0.0010 | 5762010  |
| Total Phosphorus                 | mg/L    | 12           | 0.4    | 5761988  |
| Sulphide                         | mg/L    | 0.037        | 0.020  | 5764591  |
| Turbidity                        | NTU     | 660          | 0.1    | 5757542  |
| WAD Cyanide (Free)               | ug/L    | ND           | 1      | 5760081  |
| Alkalinity (Total as CaCO3)      | mg/L    | 280          | 1.0    | 5759984  |
| Metals                           | -       |              |        |          |
| Dissolved (0.2u) Aluminum (Al)   | ug/L    | ND           | 5      | 5760804  |
| Chromium (VI)                    | ug/L    | ND           | 0.50   | 5767547  |
| Mercury (Hg)                     | ug/L    | ND           | 0.1    | 5766584  |
| Total Antimony (Sb)              | ug/L    | ND           | 0.50   | 5760479  |
| Total Arsenic (As)               | ug/L    | 1.1          | 1.0    | 5760479  |
| Total Beryllium (Be)             | ug/L    | ND           | 0.50   | 5760479  |
| Total Boron (B)                  | ug/L    | 88           | 10     | 5760479  |
| Total Cadmium (Cd)               | ug/L    | ND           | 0.10   | 5760479  |
| Total Chromium (Cr)              | ug/L    | ND           | 5.0    | 5760479  |
| Total Cobalt (Co)                | ug/L    | 1.4          | 0.50   | 5760479  |
| Total Copper (Cu)                | ug/L    | 3.8          | 1.0    | 5760479  |
| Total Iron (Fe)                  | ug/L    | 330          | 100    | 5760479  |
| RDL = Reportable Detection Limi  | t       |              |        |          |
| QC Batch = Quality Control Batch | า       |              |        |          |
| ND = Not detected                |         |              |        |          |
| N/A = Not Applicable             |         |              |        |          |



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

# **PWQO METALS AND INORGANICS (WATER)**

| Maxxam ID                      |       | HWT094              |       |          |
|--------------------------------|-------|---------------------|-------|----------|
| Sampling Date                  |       | 2018/09/28<br>13:30 |       |          |
| COC Number                     |       | 682753-01-01        |       |          |
|                                | UNITS | MW-2                | RDL   | QC Batch |
| Total Lead (Pb)                | ug/L  | ND                  | 0.50  | 5760479  |
| Total Molybdenum (Mo)          | ug/L  | 13                  | 0.50  | 5760479  |
| Total Nickel (Ni)              | ug/L  | 9.2                 | 1.0   | 5760479  |
| Total Selenium (Se)            | ug/L  | ND                  | 2.0   | 5760479  |
| Total Silver (Ag)              | ug/L  | ND                  | 0.10  | 5760479  |
| Total Thallium (Tl)            | ug/L  | ND                  | 0.050 | 5760479  |
| Total Tungsten (W)             | ug/L  | 1.0                 | 1.0   | 5760479  |
| Total Uranium (U)              | ug/L  | 7.7                 | 0.10  | 5760479  |
| Total Vanadium (V)             | ug/L  | 0.77                | 0.50  | 5760479  |
| Total Zinc (Zn)                | ug/L  | 7.7                 | 5.0   | 5760479  |
| Total Zirconium (Zr)           | ug/L  | ND                  | 1.0   | 5760479  |
| RDL = Reportable Detection Lir | nit   |                     |       |          |
| QC Batch = Quality Control Bat | ch    |                     |       |          |
| ND = Not detected              |       |                     |       |          |



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

**Collected:** 2018/09/28

#### **TEST SUMMARY**

| Maxxam ID: | HWT008 |
|------------|--------|
| Sample ID: | MW-1D  |
| Matrix:    | Water  |

| Sample ID: MW-1D<br>Matrix: Water     |                 |         |            |               | Shipped:<br>Received: 2018/09/28 |
|---------------------------------------|-----------------|---------|------------|---------------|----------------------------------|
| Test Description                      | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                          |
| Dissolved Aluminum (0.2 u, clay free) | ICP/MS          | 5760804 | N/A        | 2018/10/02    | Prempal Bhatti                   |
| Alkalinity                            | AT              | 5760576 | N/A        | 2018/10/04    | Surinder Rai                     |
| Chromium (VI) in Water                | IC              | 5767547 | N/A        | 2018/10/04    | Lang Le                          |
| Free (WAD) Cyanide                    | SKAL/CN         | 5760081 | N/A        | 2018/10/01    | Louise Harding                   |
| Dissolved Oxygen                      | DO              | 5759321 | 2018/09/29 | 2018/09/29    | Hinal Shah                       |
| Hardness (calculated as CaCO3)        |                 | 5758768 | N/A        | 2018/10/03    | Automated Statchk                |
| Mercury                               | CV/AA           | 5766584 | 2018/10/04 | 2018/10/04    | Ron Morrison                     |
| Total Metals Analysis by ICPMS        | ICP/MS          | 5760479 | N/A        | 2018/10/02    | Arefa Dabhad                     |
| Total Ammonia-N                       | LACH/NH4        | 5760560 | N/A        | 2018/10/05    | Anastassia Hamanov               |
| рН                                    | AT              | 5760592 | N/A        | 2018/10/04    | Surinder Rai                     |
| Phenols (4AAP)                        | TECH/PHEN       | 5764253 | N/A        | 2018/10/03    | Bramdeo Motiram                  |
| Field pH                              | РН              | ONSITE  | N/A        | 2018/09/28    | Adriana Smith                    |
| Sulphide                              | ISE/S           | 5764591 | N/A        | 2018/10/03    | Gnana Thomas                     |
| Field pH                              | РН              | ONSITE  | N/A        | 2018/09/28    | Adriana Smith                    |
| Total Phosphorus (Colourimetric)      | LACH/P          | 5761988 | 2018/10/02 | 2018/10/03    | Amanpreet Sappal                 |
| Turbidity                             | AT              | 5757542 | N/A        | 2018/10/01    | Neil Dassanayake                 |
| Un-ionized Ammonia                    | CALC/NH3        | 5758770 | 2018/10/05 | 2018/10/05    | Automated Statchk                |

Maxxam ID: HWT008 Dup Sample ID: MW-1D Matrix: Water

| Test Description               | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst      |
|--------------------------------|-----------------|---------|------------|---------------|--------------|
| Dissolved Oxygen               | DO              | 5759321 | 2018/09/29 | 2018/09/29    | Hinal Shah   |
| Total Metals Analysis by ICPMS | ICP/MS          | 5760479 | N/A        | 2018/10/02    | Arefa Dabhad |

| Maxxam ID: | HWT094 |
|------------|--------|
| Sample ID: | MW-2   |
| Matrix:    | Water  |

Collected: 2018/09/28 Shipped: Received: 2018/09/28

2018/09/28

2018/09/28

Collected:

Shipped:

Received:

| Test Description                      | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|---------------------------------------|-----------------|---------|------------|---------------|--------------------|
| Dissolved Aluminum (0.2 u, clay free) | ICP/MS          | 5760804 | N/A        | 2018/10/02    | Prempal Bhatti     |
| Alkalinity                            | AT              | 5759984 | N/A        | 2018/10/04    | Surinder Rai       |
| Chromium (VI) in Water                | IC              | 5767547 | N/A        | 2018/10/04    | Lang Le            |
| Free (WAD) Cyanide                    | SKAL/CN         | 5760081 | N/A        | 2018/10/01    | Louise Harding     |
| Dissolved Oxygen                      | DO              | 5759321 | 2018/09/29 | 2018/09/29    | Hinal Shah         |
| Hardness (calculated as CaCO3)        |                 | 5758768 | N/A        | 2018/10/03    | Automated Statchk  |
| Mercury                               | CV/AA           | 5766584 | 2018/10/04 | 2018/10/04    | Ron Morrison       |
| Total Metals Analysis by ICPMS        | ICP/MS          | 5760479 | N/A        | 2018/10/02    | Arefa Dabhad       |
| Total Ammonia-N                       | LACH/NH4        | 5760560 | N/A        | 2018/10/05    | Anastassia Hamanov |
| рН                                    | AT              | 5759987 | N/A        | 2018/10/04    | Surinder Rai       |
| Phenols (4AAP)                        | TECH/PHEN       | 5762010 | N/A        | 2018/10/02    | Bramdeo Motiram    |
| Field pH                              | РН              | ONSITE  | N/A        | 2018/09/28    | Adriana Smith      |
| Sulphide                              | ISE/S           | 5764591 | N/A        | 2018/10/03    | Gnana Thomas       |

#### Page 5 of 10

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

#### **TEST SUMMARY**

| Maxxam ID:<br>Sample ID:<br>Matrix: | HWT094<br>MW-2<br>Water |                 |         |            |               | Collected:<br>Shipped:<br>Received: | 2018/09/28<br>2018/09/28 |
|-------------------------------------|-------------------------|-----------------|---------|------------|---------------|-------------------------------------|--------------------------|
| Test Description                    |                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                             |                          |
| Field pH                            |                         | PH              | ONSITE  | N/A        | 2018/09/28    | Adriana Sr                          | nith                     |
| Total Phosphorus (Colour            | rimetric)               | LACH/P          | 5761988 | 2018/10/02 | 2018/10/03    | Amanpree                            | t Sappal                 |
| Turbidity                           |                         | AT              | 5757542 | N/A        | 2018/10/01    | Neil Dassa                          | nayake                   |
| Un-ionized Ammonia                  |                         | CALC/NH3        | 5758770 | 2018/10/05 | 2018/10/05    | Automate                            | d Statchk                |



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1

18.3°C

Results relate only to the items tested.



Maxxam Job #: B8P6421 Report Date: 2018/10/09

### QUALITY ASSURANCE REPORT

Cole Engineering Group Ltd Client Project #: 2018-0419

Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

|          |                                |            | Matrix     | Spike     | SPIKED     | BLANK     | Method B         | lank  | RP        | D         | QC Sta     | andard    |
|----------|--------------------------------|------------|------------|-----------|------------|-----------|------------------|-------|-----------|-----------|------------|-----------|
| QC Batch | Parameter                      | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value            | UNITS | Value (%) | QC Limits | % Recovery | QC Limits |
| 5757542  | Turbidity                      | 2018/10/01 |            |           | 101        | 85 - 115  | ND, RDL=0.1      | NTU   | 4.5       | 20        |            |           |
| 5759984  | Alkalinity (Total as CaCO3)    | 2018/10/04 |            |           | 96         | 85 - 115  | ND, RDL=1.0      | mg/L  | 0.64      | 20        |            |           |
| 5759987  | рН                             | 2018/10/04 |            |           | 101        | 98 - 103  |                  |       | 0.24      | N/A       |            |           |
| 5760081  | WAD Cyanide (Free)             | 2018/10/01 | 94         | 80 - 120  | 101        | 80 - 120  | ND,RDL=1         | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Antimony (Sb)            | 2018/10/02 | 100        | 80 - 120  | 98         | 80 - 120  | ND, RDL=0.50     | ug/L  | 2.8       | 20        |            |           |
| 5760479  | Total Arsenic (As)             | 2018/10/02 | 96         | 80 - 120  | 98         | 80 - 120  | ND, RDL=1.0      | ug/L  | 1.5       | 20        |            |           |
| 5760479  | Total Beryllium (Be)           | 2018/10/02 | 93         | 80 - 120  | 97         | 80 - 120  | ND, RDL=0.50     | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Boron (B)                | 2018/10/02 | 89         | 80 - 120  | 96         | 80 - 120  | ND, RDL=10       | ug/L  | 1.4       | 20        |            |           |
| 5760479  | Total Cadmium (Cd)             | 2018/10/02 | 99         | 80 - 120  | 99         | 80 - 120  | ND, RDL=0.10     | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Chromium (Cr)            | 2018/10/02 | 87         | 80 - 120  | 90         | 80 - 120  | ND, RDL=5.0      | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Cobalt (Co)              | 2018/10/02 | 94         | 80 - 120  | 97         | 80 - 120  | ND, RDL=0.50     | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Copper (Cu)              | 2018/10/02 | 94         | 80 - 120  | 95         | 80 - 120  | ND, RDL=1.0      | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Iron (Fe)                | 2018/10/02 | 95         | 80 - 120  | 97         | 80 - 120  | ND, RDL=100      | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Lead (Pb)                | 2018/10/02 | 95         | 80 - 120  | 95         | 80 - 120  | ND, RDL=0.50     | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Molybdenum (Mo)          | 2018/10/02 | 100        | 80 - 120  | 101        | 80 - 120  | ND, RDL=0.50     | ug/L  | 2.8       | 20        |            |           |
| 5760479  | Total Nickel (Ni)              | 2018/10/02 | 87         | 80 - 120  | 92         | 80 - 120  | ND, RDL=1.0      | ug/L  | 9.8       | 20        |            |           |
| 5760479  | Total Selenium (Se)            | 2018/10/02 | 98         | 80 - 120  | 101        | 80 - 120  | ND, RDL=2.0      | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Silver (Ag)              | 2018/10/02 | 92         | 80 - 120  | 91         | 80 - 120  | ND, RDL=0.10     | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Thallium (Tl)            | 2018/10/02 | 92         | 80 - 120  | 92         | 80 - 120  | ND,<br>RDL=0.050 | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Tungsten (W)             | 2018/10/02 | 98         | 80 - 120  | 96         | 80 - 120  | ND, RDL=1.0      | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Uranium (U)              | 2018/10/02 | 97         | 80 - 120  | 94         | 80 - 120  | ND, RDL=0.10     | ug/L  | 2.0       | 20        |            |           |
| 5760479  | Total Vanadium (V)             | 2018/10/02 | 89         | 80 - 120  | 92         | 80 - 120  | ND, RDL=0.50     | ug/L  | 3.7       | 20        |            |           |
| 5760479  | Total Zinc (Zn)                | 2018/10/02 | 96         | 80 - 120  | 101        | 80 - 120  | ND, RDL=5.0      | ug/L  | NC        | 20        |            |           |
| 5760479  | Total Zirconium (Zr)           | 2018/10/02 | 94         | 80 - 120  | 94         | 80 - 120  | ND, RDL=1.0      | ug/L  | NC        | 20        |            |           |
| 5760560  | Total Ammonia-N                | 2018/10/05 | 104        | 75 - 125  | 101        | 80 - 120  | ND,<br>RDL=0.050 | mg/L  | 8.6       | 20        |            |           |
| 5760576  | Alkalinity (Total as CaCO3)    | 2018/10/04 |            |           | 95         | 85 - 115  | ND, RDL=1.0      | mg/L  | 2.0       | 20        |            |           |
| 5760592  | рН                             | 2018/10/04 |            |           | 101        | 98 - 103  |                  |       | 0.51      | N/A       |            |           |
| 5760804  | Dissolved (0.2u) Aluminum (Al) | 2018/10/02 | 104        | 80 - 120  | 103        | 80 - 120  | ND,RDL=5         | ug/L  | 2.5       | 20        |            |           |



Maxxam Job #: B8P6421 Report Date: 2018/10/09

## QUALITY ASSURANCE REPORT(CONT'D)

Cole Engineering Group Ltd Client Project #: 2018-0419

Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

|          |                  |            | Matrix     | Matrix Spike |            | SPIKED BLANK |                   | Blank | RPD       |           | QC Standard |           |
|----------|------------------|------------|------------|--------------|------------|--------------|-------------------|-------|-----------|-----------|-------------|-----------|
| QC Batch | Parameter        | Date       | % Recovery | QC Limits    | % Recovery | QC Limits    | Value             | UNITS | Value (%) | QC Limits | % Recovery  | QC Limits |
| 5761988  | Total Phosphorus | 2018/10/03 | 103        | 80 - 120     | 90         | 80 - 120     | ND,<br>RDL=0.004  | mg/L  | 4.1       | 20        | 82          | 80 - 120  |
| 5762010  | Phenols-4AAP     | 2018/10/02 | 100        | 80 - 120     | 100        | 80 - 120     | ND,<br>RDL=0.0010 | mg/L  | 6.2       | 20        |             |           |
| 5764253  | Phenols-4AAP     | 2018/10/03 | 99         | 80 - 120     | 100        | 80 - 120     | ND,<br>RDL=0.0010 | mg/L  | NC        | 20        |             |           |
| 5764591  | Sulphide         | 2018/10/03 | 91         | 80 - 120     | 91         | 80 - 120     | ND,<br>RDL=0.020  | mg/L  | NC        | 20        |             |           |
| 5766584  | Mercury (Hg)     | 2018/10/04 | 96         | 75 - 125     | 102        | 80 - 120     | ND, RDL=0.1       | ug/L  | NC        | 20        |             |           |
| 5767547  | Chromium (VI)    | 2018/10/04 | 102        | 80 - 120     | 104        | 80 - 120     | ND, RDL=0.50      | ug/L  | 0.60      | 20        |             |           |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



Cole Engineering Group Ltd Client Project #: 2018-0419 Site Location: NIAGARA ON THE LAKE Sampler Initials: JM

### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).



Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

| A Boreau   | Veritas Group Company             | 6740 Campobello Road. M                                                   | and the second se |                                         |                | REPOR                                  |                                    |           |      |              |                  |        | PROJECT   | INFORM    | ATION:               |              |                        | * Laboratory Us                                                                    | e Only:                     |                   |  |                      |
|------------|-----------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|----------------------------------------|------------------------------------|-----------|------|--------------|------------------|--------|-----------|-----------|----------------------|--------------|------------------------|------------------------------------------------------------------------------------|-----------------------------|-------------------|--|----------------------|
|            | #01000 Oals Es                    | gineering Group Ltd                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Company                                 | Nome (1        | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | ICINER                             | OTH       | la . | Qui          | otation #        | -      | B0206     | 4         |                      |              |                        | Maxxam Job #:                                                                      | Bott                        | le Order #:       |  |                      |
| ny Nam     | Accounts Payable                  |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Attention:                              | Alireza        | Hejazi                                 |                                    | P.O. #    |      | P.O. #.      |                  |        |           |           |                      |              |                        |                                                                                    |                             |                   |  |                      |
| iro<br>È   | 70 Valleywood Dr                  |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Address                                 |                |                                        |                                    | DO ALTUE, |      |              | ject             |        |           |           | MAGRA ON THE LAKE    |              |                        | HCI                                                                                | AR                          | COC #:            |  | 82753<br>ct Manager: |
|            | Markham ON L3P                    | R 4T5<br>Fax (905                                                         | 040 2064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                | 27-6161 Ext: 2                         |                                    | LSR       | 412  |              | oject Nam<br>e # | ne: ,  | IVU       | A616A     | UN I                 | TIE LI       |                        |                                                                                    |                             |                   |  |                      |
|            | (416) 987-6161<br>accountspayable | @coleengineering.ca                                                       | 940-2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tel:<br>Email:                          |                | @coleengine                            |                                    | 10.1      | 1    |              | e #<br>mpled By  | y:     | St        | MES .     | MAG                  | 68           |                        | C#682753-01-01                                                                     | Jolan                       | ta Goralczyk-     |  |                      |
| FRE        |                                   | WATER OR WATER                                                            | INTENDED F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | ONSUMPTION     | MUST BE                                |                                    |           |      | ANALY        | SIS REQ          | UESTED | (PLEASE B | E SPECIFI | IC)                  |              | and the second second  | Turnaround Time (TAT<br>Please provide advance notic                               |                             | ts                |  |                      |
|            | SUBMITTED C                       | N THE MAXXAM DRI                                                          | NKING WATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R CHAIN OF C                            | USTODY         |                                        | .(6                                |           |      |              |                  |        |           | r         | 1                    | '            | Regular                | (Standard) TAT:                                                                    | e for fusit projec          |                   |  |                      |
|            | ation 153 (2011)                  |                                                                           | her Regulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                       | Special In:    | tructions                              | circle):                           | 10        | 2    |              |                  |        |           |           | *                    |              |                        | iled if Rush TAT is not specified).                                                |                             | L                 |  |                      |
|            | Res/Park Medium                   |                                                                           | Sanitary Sewer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                |                                        | aid Filtered (please c             | ganic     |      |              | •                | х.     |           |           |                      |              | 1 N. 1                 | AT = 5-7 Working days for most tests .<br>•: Standard TAT for certain tests such : | as BOD and Dioxi            | ns/Furans are > 5 |  |                      |
| e 2<br>e 3 | Ind/Comm Coarse                   | C Reg 558                                                                 | Storm Sewer By<br>unicipality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | yiaw                                    |                |                                        | Filtered (please<br>fetals (HgM Cr | d Inor    |      |              |                  |        |           |           |                      |              | days - cont            | act your Project Manager for details.                                              |                             |                   |  |                      |
| e          |                                   | wao wao                                                                   | ÷.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                |                                        | and the                            | ine an    |      |              |                  |        | -         |           |                      |              | Job Spec<br>Date Requi | ific Rush TAT (if applies to entire s<br>red:                                      | ubmission)<br>Time Required |                   |  |                      |
|            |                                   | Other                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                |                                        | Met                                | Meta      |      |              |                  |        |           |           |                      |              |                        | irmation Number:                                                                   | (call lab for #)            |                   |  |                      |
|            |                                   | Sample (Location) Ider                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date Sampled                            | Time Sampled   | Matrix                                 | E                                  | waa       |      |              |                  |        |           |           |                      | -            | # of Bottles           | s Co                                                                               | mments                      |                   |  |                      |
| 1.2        | nple Barcode Label                |                                                                           | muation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uate sampled                            | The damping    | THIS II IN                             |                                    | X         |      |              | -                |        |           |           | 10                   |              | G                      | 0-10                                                                               |                             |                   |  |                      |
| 191        | boz                               | MW-1D                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2018592                                 | 1:15pm         | En                                     |                                    | X         |      |              |                  |        |           |           |                      |              | <u> </u>               | C((6+) was                                                                         | not Gi                      | beet.             |  |                      |
| 19         | 602.                              | MW-Z                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sep 78/2018                             | 1:30pm         | Eu                                     | alest ra                           | X         |      |              |                  |        |           |           |                      |              | 9                      |                                                                                    |                             |                   |  |                      |
|            |                                   |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                |                                        |                                    |           |      |              |                  |        |           |           |                      | -            |                        |                                                                                    |                             |                   |  |                      |
|            |                                   |                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                |                                        |                                    |           |      |              |                  |        |           |           |                      |              |                        | -                                                                                  |                             |                   |  |                      |
| _          |                                   |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                |                                        |                                    |           |      | -            | _                | _      |           |           |                      |              |                        |                                                                                    |                             |                   |  |                      |
|            |                                   |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                |                                        | 1.0                                |           |      |              |                  |        |           |           |                      | 165 <u> </u> |                        | 5.6                                                                                |                             |                   |  |                      |
|            |                                   |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                |                                        |                                    |           |      |              |                  |        | -         |           |                      |              |                        |                                                                                    |                             |                   |  |                      |
| 12         |                                   |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                |                                        |                                    |           |      |              |                  |        |           | а.<br>С   |                      |              |                        | 28-Sep-18 18:21                                                                    |                             | ¥.                |  |                      |
|            |                                   |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                |                                        |                                    |           |      |              |                  |        |           |           |                      |              | Jolai                  | nta Goralczyk                                                                      |                             |                   |  |                      |
|            |                                   |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                |                                        |                                    |           |      |              |                  |        |           |           |                      | _            |                        | 38P6421                                                                            |                             |                   |  |                      |
|            |                                   |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 30             |                                        |                                    | _         |      |              |                  |        |           |           |                      |              | CA2                    | ENV-710                                                                            |                             |                   |  |                      |
|            |                                   |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                |                                        |                                    |           |      |              |                  |        |           |           |                      |              |                        | oratory Use Only                                                                   |                             |                   |  |                      |
|            | * RELINQUISHED BY: (S             | ignature/Print)                                                           | Date: (YY/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000 100 100 100 100 100 100 100 100 10 | me At          |                                        | BY: (Signature                     |           |      | Date: (YY/MM | 1                | 18:    | Time      |           | used and<br>ubmitted | Time Se      |                        | Custo                                                                              | dy Seal                     | Yes No            |  |                      |
|            | Jones Mus                         | ne.                                                                       | 18/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 128 6.                                  | 23/m / P       | a gur                                  | ALDUS                              | mi        |      | 20001        | 100              | 10.0   | <u>-</u>  | -         |                      | 1            | 19                     | 1818 Int                                                                           |                             | x                 |  |                      |
| WLED       | GMENT AND ACCEPTANCE              | RITING, WORK SUBMITTED<br>OF OUR TERMS WHICH AR<br>INQUISHER TO ENSURE TH | E AVAILABLE FO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OR VIEWING AT WY                        | W.MAXXAM.CALLE | RMD.                                   |                                    |           |      |              |                  |        |           |           | SAMP                 | LES MUST I   | Service State          | 10° C ) FROM TIME OF SAMPLING                                                      | White: Maxxa                | ( Yellow: Cli     |  |                      |

Maxxam Analytics International Corporation o/a Maxxam Analytics

Appendix E

Water Balance Analysis

# CLIMATIC WATER BUDGET: CLIMATE NORMAL 1981-2010 (ST CATHARINES A, Climate ID: 6137287) Potential Evapotranspiration

| Month     | Mean Temperature (°C) | Heat Index | Potential Evapotranspiration (mm) | Daylight Correction Value | Adusted PET (mm) | Total Precipitation (mm) | Surplus (mm) | Deficit (mm) |
|-----------|-----------------------|------------|-----------------------------------|---------------------------|------------------|--------------------------|--------------|--------------|
| January   | -3.8                  | 0.0        | 0.0                               | 0.81                      | 0.0              | 65.20                    | 65.2         | 0.0          |
| February  | -2.9                  | 0.0        | 0.0                               | 0.81                      | 0.0              | 54.90                    | 54.9         | 0.0          |
| March     | 1.1                   | 0.1        | 3.4                               | 1.03                      | 3.5              | 61.70                    | 58.2         | 0.0          |
| April     | 7.4                   | 1.8        | 30.8                              | 1.12                      | 34.5             | 77.00                    | 42.5         | 0.0          |
| May       | 13.7                  | 4.6        | 62.9                              | 1.27                      | 79.8             | 76.80                    | 0.0          | 3.0          |
| June      | 19                    | 7.5        | 92.0                              | 1.29                      | 118.2            | 85.90                    | 0.0          | 32.3         |
| July      | 21.9                  | 9.4        | 108.4                             | 1.30                      | 141.2            | 77.80                    | 0.0          | 63.4         |
| August    | 20.8                  | 8.7        | 102.1                             | 1.20                      | 122.8            | 70.30                    | 0.0          | 52.5         |
| September | 16.6                  | 6.2        | 78.6                              | 1.05                      | 82.3             | 90.60                    | 8.3          | 0.0          |
| October   | 10.4                  | 3.0        | 45.7                              | 0.95                      | 43.3             | 67.00                    | 23.7         | 0.0          |
| November  | 4.6                   | 0.9        | 17.7                              | 0.81                      | 14.3             | 81.60                    | 67.3         | 0.0          |
| December  | -0.9                  | 0.0        | 0.0                               | 0.77                      | 0.0              | 71.50                    | 71.5         | 0.0          |
| TOTALS    |                       | 42.1       |                                   |                           | 639.8            | 880.30                   | 391.7        | 151.2        |
|           |                       |            |                                   | тот                       | AL WATER SURPLUS | 240.5                    | mm           |              |

Latitude

43.2

### Estimates of potential evaporation (mm) [edit]

Thornthwaite equation (1948) [edit]

$$PET = 16\left(\frac{L}{12}\right)\left(\frac{N}{30}\right)\left(\frac{10T_a}{I}\right)^{\alpha}$$

Where

PET is the estimated potential evapotranspiration (mm/month)

 $T_a$  is the average daily temperature (degrees Celsius; if this is negative, use ()) of the month being calculated N is the number of days in the month being calculated

IV is the humber of days in the month being calculated

```
L is the average day length (hours) of the month being calculated

(C, T, r, 10^{-7}) I_{3}^{3} = (T, T, 10^{-5}) I_{2}^{2} = (1, 70^{-5})
```

$$\begin{split} \alpha &= (6.75 \times 10^{-7})I^3 - (7.71 \times 10^{-5})I^2 + (1.792 \times 10^{-2})I + 0.49239 \\ I &= \sum_{i=1}^{12} \left(\frac{T_{ai}}{\epsilon}\right)^{1.514} \text{ is a heat index which depends on the 12 monthly mean temperatures } T_{ai}^{[1]} \end{split}$$

 $I = \sum_{i=1}^{\infty} \left(\frac{a_i}{5}\right)$  is a heat index which depends on the 12 monthly mean temperatures  $T_{ai}^{(1)}$ 

Somewhat modified forms of this equation appear in later publications (1955 and 1957) by Thornthwaite and Mather. [2]

## Assume L=12, 12 hours of day length; N=30, 30 days in the month

### Daylight Correction Factors for Potential Evapotranspiration

|          |      |      |      |      |      | -    | -    |      |      |      |      |      |
|----------|------|------|------|------|------|------|------|------|------|------|------|------|
| Latitude | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  |
| 0        | 1.04 | 0.94 | 1.04 | 1.01 | 1.04 | 1.01 | 1.04 | 1.04 | 1.01 | 1.04 | 1.01 | 1.04 |
| 10 N     | 1.00 | 0.91 | 1.03 | 1.03 | 1.08 | 1.06 | 1.08 | 1.07 | 1.02 | 1.02 | 0.98 | 0.99 |
| 20 N     | 0.95 | 0.90 | 1.03 | 1.05 | 1.13 | 1.11 | 1.14 | 1.11 | 1.02 | 1.00 | 0.93 | 0.94 |
| 30 N     | 0.90 | 0.87 | 1.03 | 1.08 | 1.18 | 1.17 | 1.20 | 1.14 | 1.03 | 0.98 | 0.89 | 0.88 |
| 40 N     | 0.84 | 0.83 | 1.03 | 1.11 | 1.24 | 1.25 | 1.27 | 1.18 | 1.04 | 0.96 | 0.83 | 0.81 |
| >50 N    | 0.74 | 0.78 | 1.02 | 1.15 | 1.33 | 1.36 | 1.37 | 1.25 | 1.06 | 0.92 | 0.76 | 0.70 |
| 10 S     | 1.08 | 0.97 | 1.05 | 0.99 | 1.01 | 0.96 | 1.00 | 1.01 | 1.00 | 1.06 | 1.05 | 1.10 |
| 20 S     | 1.14 | 1.00 | 1.05 | 0.97 | 0.96 | 0.91 | 0.95 | 0.99 | 1.00 | 1.08 | 1.09 | 1.15 |
| 30 S     | 1.20 | 1.03 | 1.06 | 0.95 | 0.92 | 0.85 | 0.90 | 0.96 | 1.00 | 1.12 | 1.14 | 1.21 |
| 40 S     | 1.27 | 1.06 | 1.07 | 0.93 | 0.86 | 0.78 | 0.84 | 0.92 | 1.00 | 1.15 | 1.20 | 1.29 |
| >50 S    | 1.37 | 1.12 | 1.08 | 0.89 | 0.77 | 0.67 | 0.74 | 0.88 | 0.99 | 1.19 | 1.29 | 1.41 |




### WATER BUDGET - PRE-DEVELOPMENT WATER BALANCE / WATER BUDGET ASSESSMENT

| Catchment Designation                      | Site       |    |        |  |  |  |  |  |
|--------------------------------------------|------------|----|--------|--|--|--|--|--|
| Ğ                                          |            |    | Totals |  |  |  |  |  |
| Area (m <sup>2</sup> )                     | 123400     |    | 123400 |  |  |  |  |  |
| Pervious Area (m <sup>2</sup> )            | 120994     |    | 120994 |  |  |  |  |  |
| Impervious Area (m <sup>2</sup> )          | 2406       |    | 2406   |  |  |  |  |  |
| Infiltration Factors                       |            |    |        |  |  |  |  |  |
| Topography Infiltration Factor             | 0.2        |    | 0.1    |  |  |  |  |  |
| Soil Infiltration Factor                   | 0.2        |    | 0.2    |  |  |  |  |  |
| Land Cover Infiltration Factor             | 0.2        |    | 0.1    |  |  |  |  |  |
| MOE Infiltration Factor                    | 0.6        |    | 0.4    |  |  |  |  |  |
| Run-Off Coefficient                        | 0.4        |    | 0.6    |  |  |  |  |  |
| Runoff from Impervious Surfaces*           | 0.8        |    | 0.8    |  |  |  |  |  |
| Inputs (per U                              | Jnit Area) |    |        |  |  |  |  |  |
| Precipitation (mm/yr)                      | 880        |    | 880    |  |  |  |  |  |
| Run-On (mm/yr)                             | 0          |    | 0      |  |  |  |  |  |
| Other Inputs (mm/yr)                       | 0          |    | 0      |  |  |  |  |  |
| Total Inputs (mm/yr)                       | 880        |    | 880    |  |  |  |  |  |
| Outputs (per                               | Unit Area  | l) |        |  |  |  |  |  |
| Precipitation Surplus (mm/yr)              | 250        | Í  | 250    |  |  |  |  |  |
| Net Surplus (mm/yr)                        | 250        |    | 250    |  |  |  |  |  |
| Evapotranspiration (mm/yr)                 | 631        |    | 631    |  |  |  |  |  |
| Infiltration (mm/yr)                       | 141        |    | 141    |  |  |  |  |  |
| Rooftop Infiltration (mm/yr)**             | 0          |    | 0      |  |  |  |  |  |
| Total Infiltration (mm/yr)                 | 141        |    | 141    |  |  |  |  |  |
| Runoff Pervious Areas                      | 94         |    | 94     |  |  |  |  |  |
| Runoff Impervious Areas                    | 14         |    | 14     |  |  |  |  |  |
| Total Runoff (mm/yr)                       | 108        |    | 108    |  |  |  |  |  |
| Total Outputs (mm/yr)                      | 880        |    | 880    |  |  |  |  |  |
| Difference (Inputs - Outputs)              | 0          |    | 0      |  |  |  |  |  |
| Inputs (Vo                                 | lumes)     |    |        |  |  |  |  |  |
| Precipitation (m <sup>3</sup> /yr)         | 108629     |    | 108629 |  |  |  |  |  |
| Run-On (m³/yr)                             | 0          |    | 0      |  |  |  |  |  |
| Other Inputs (m <sup>3</sup> /yr)          | 0          |    | 0      |  |  |  |  |  |
| Total Inputs (m <sup>3</sup> /yr)          | 108629     |    | 108629 |  |  |  |  |  |
| Outputs (Volumes)                          |            |    |        |  |  |  |  |  |
| Precipitation Surplus (m <sup>3</sup> /yr) | 30789      |    | 30789  |  |  |  |  |  |
| Net Surplus (m <sup>3</sup> /yr)           | 30789      |    | 30789  |  |  |  |  |  |
| Evapotranspiration (m <sup>3</sup> /yr)    | 77840      |    | 77840  |  |  |  |  |  |
| Infiltration (m <sup>3</sup> /yr)          | 17457      |    | 17457  |  |  |  |  |  |
| Rooftop Infiltration (m <sup>3</sup> /yr)  | 0          |    | 0      |  |  |  |  |  |
| Total Infiltration (m <sup>3</sup> /yr)    | 17457      |    | 17457  |  |  |  |  |  |
| Runoff Pervious Areas                      | 11638      |    | 11638  |  |  |  |  |  |
| Runoff Impervious Areas                    | 1694       |    | 1694   |  |  |  |  |  |
| Total Runoff (m <sup>3</sup> /yr)          | 13332      |    | 13332  |  |  |  |  |  |
| Total Outputs (m³/yr)                      | 108629     |    | 108629 |  |  |  |  |  |
| Difference (Inputs - Outputs)              | 0          |    | 0      |  |  |  |  |  |

### Table 3.1: Hydrologic Cycle Component Values

|                                                                 | Water Holding                                                                                                                                                        |                                                                                                                                      | <b>D</b>                                                                                           | Evapo-                                                                            | D 44                                            | T                                       |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------|
|                                                                 | Capacity                                                                                                                                                             | Hydrologic<br>Soil Course                                                                                                            | Precipitation                                                                                      | transpiration                                                                     | Runoff                                          | Infiltration                            |
| Urban Lawns/Sh                                                  | mm<br>allow Rooted Cro                                                                                                                                               | Soil Group                                                                                                                           | mm                                                                                                 | mm<br>note)                                                                       | mm                                              | mm                                      |
| Fine Sand                                                       | 50                                                                                                                                                                   | рз (зршасц, о.<br>А                                                                                                                  | 940                                                                                                | 515                                                                               | 149                                             | 276                                     |
| Fine Sandy Loam                                                 | 75                                                                                                                                                                   | B                                                                                                                                    | 940                                                                                                | 525                                                                               | 145                                             | 278                                     |
| Silt Loam                                                       | 125                                                                                                                                                                  | c                                                                                                                                    | 940                                                                                                | 536                                                                               | 222                                             | 182                                     |
| Clay Loam                                                       | 100                                                                                                                                                                  | CD                                                                                                                                   | 940                                                                                                | 531                                                                               | 245                                             | 164                                     |
| Clay                                                            | 75                                                                                                                                                                   | D                                                                                                                                    | 940                                                                                                | 525                                                                               | 270                                             | 145                                     |
| -                                                               | ed Crops (corn a                                                                                                                                                     |                                                                                                                                      |                                                                                                    | 525                                                                               | 270                                             | 145                                     |
| ine Sand                                                        | 75                                                                                                                                                                   | A A                                                                                                                                  | 940                                                                                                | 525                                                                               | 125                                             | 291                                     |
| ine Sandy Loam                                                  | 150                                                                                                                                                                  | B                                                                                                                                    | 940                                                                                                | 539                                                                               | 160                                             | 241                                     |
| Silt Loam                                                       | 200                                                                                                                                                                  | C                                                                                                                                    | 940                                                                                                | 543                                                                               | 199                                             | 199                                     |
|                                                                 |                                                                                                                                                                      |                                                                                                                                      | 940                                                                                                |                                                                                   | 218                                             |                                         |
| Clay Loam                                                       | 200                                                                                                                                                                  | CD<br>D                                                                                                                              | 940                                                                                                | 543<br>539                                                                        | 218                                             | 179                                     |
| Clay                                                            |                                                                                                                                                                      | D                                                                                                                                    | 940                                                                                                | 222                                                                               | 241                                             | 160                                     |
| Pasture and Shru                                                |                                                                                                                                                                      |                                                                                                                                      |                                                                                                    |                                                                                   |                                                 |                                         |
| Fine Sand                                                       | 100                                                                                                                                                                  | A                                                                                                                                    | 940                                                                                                | 531                                                                               | 102                                             | 307                                     |
| Fine Sandy Loam                                                 | 150                                                                                                                                                                  | В                                                                                                                                    | 940                                                                                                | 539                                                                               | 140                                             | 261                                     |
| Silt Loam                                                       | 250                                                                                                                                                                  | С                                                                                                                                    | 940                                                                                                | 546                                                                               | 177                                             | 217                                     |
| Clay Loam                                                       | 250                                                                                                                                                                  | CD                                                                                                                                   | 940                                                                                                | 546                                                                               | 197                                             | 197                                     |
| Clay                                                            | 200                                                                                                                                                                  | D                                                                                                                                    | 940                                                                                                | 543                                                                               | 218                                             | 179                                     |
| Mature Forests                                                  |                                                                                                                                                                      |                                                                                                                                      |                                                                                                    |                                                                                   |                                                 | -                                       |
| Fine Sand                                                       | 250                                                                                                                                                                  | A                                                                                                                                    | 940                                                                                                | 546                                                                               | 79                                              | 315                                     |
|                                                                 | 200                                                                                                                                                                  | В                                                                                                                                    | 940                                                                                                | 548                                                                               | 118                                             | 274                                     |
| Fine Sandy Loam                                                 | 300                                                                                                                                                                  | Ъ                                                                                                                                    | 240                                                                                                | 2.12                                                                              |                                                 |                                         |
|                                                                 | 400                                                                                                                                                                  | C                                                                                                                                    | 940                                                                                                | 550                                                                               | 156                                             | 234                                     |
| Silt Loam                                                       |                                                                                                                                                                      |                                                                                                                                      |                                                                                                    |                                                                                   | 156<br>176                                      | 234<br>215                              |
| Silt Loam<br>Clay Loam<br>Clay                                  | 400<br>400<br>350                                                                                                                                                    | C<br>CD<br>D                                                                                                                         | 940<br>940<br>940                                                                                  | 550<br>550<br>549                                                                 | 176<br>196                                      | 215<br>196                              |
| with high runoff p<br>baseflow and runo<br>This is the total in | 400<br>400<br>350<br>e Soil Group A rep<br>otential. The evap<br>off.<br><i>infiltration of whici<br/>uming a factor for</i><br><u>ohy</u> Flat Land,<br>Rolling Lau | C<br>CD<br>D<br>oresents soils wi<br>otranspiration v<br>h some discharg<br>topography, soil<br>average slope <<br>nd, average slope | 940<br>940<br>940<br>th low runoff po<br>alues are for mar<br>tes back to the st<br>ils and cover. | 550<br>550<br>549<br>tential and Soil (<br>ture vegetation.)<br>tream as base flo | 176<br>196<br>Group D repres<br>Streamflow is o | 215<br>196<br>ents soils<br>composed of |

\*Evaporation from impervious areas was assumed to be:





### WATER BUDGET, POST-DEVELOPMENT WATER BALANCE / WATER BUDGET ASSESSMENT

| Catchment Designation                      | Site     |        |  |  |  |  |  |  |
|--------------------------------------------|----------|--------|--|--|--|--|--|--|
| Ű                                          |          | Total  |  |  |  |  |  |  |
| Area (m <sup>2</sup> )                     | 123400   | 123400 |  |  |  |  |  |  |
| Pervious Area (m <sup>2</sup> )            | 44500    | 44500  |  |  |  |  |  |  |
| Impervious Area (m <sup>2</sup> )          | 78900    | 78900  |  |  |  |  |  |  |
| New Rooftop Area (m <sup>2</sup> )         | 0        | 0      |  |  |  |  |  |  |
| Infiltration Factors                       |          |        |  |  |  |  |  |  |
| Topography Infiltration Factor             | 0.2      | 0.1    |  |  |  |  |  |  |
| Soil Infiltration Factor                   | 0.2      | 0.2    |  |  |  |  |  |  |
| Land Cover Infiltration Factor             | 0.2      | 0.1    |  |  |  |  |  |  |
| MOE Infiltration Factor                    | 0.6      | 0.4    |  |  |  |  |  |  |
| Run-Off Coefficient                        | 0.4      | 0.6    |  |  |  |  |  |  |
| Runoff from Impervious Surfaces*           | 0.8      | 0.8    |  |  |  |  |  |  |
| Inputs (per Unit                           | t Area)  |        |  |  |  |  |  |  |
| Precipitation (mm/yr)                      | 880      | 880    |  |  |  |  |  |  |
| Run-On (mm/yr)                             | 0        | 0      |  |  |  |  |  |  |
| Other Inputs (mm/yr)                       | 0        | 0      |  |  |  |  |  |  |
| Total Inputs (mm/yr)                       | 880      | 880    |  |  |  |  |  |  |
| Outputs (per Un                            | it Area) |        |  |  |  |  |  |  |
| Precipitation Surplus (mm/yr)              | 537      | 537    |  |  |  |  |  |  |
| Net Surplus (mm/yr)                        | 537      | 537    |  |  |  |  |  |  |
| Evapotranspiration (mm/yr)                 | 343      | 343    |  |  |  |  |  |  |
| Infiltration (mm/yr)                       | 52       | 52     |  |  |  |  |  |  |
| Rooftop Infiltration (mm/yr)               | 0        | 0      |  |  |  |  |  |  |
| Total Infiltration (mm/yr)                 | 52       | 52     |  |  |  |  |  |  |
| Runoff Pervious Areas                      | 35       | 35     |  |  |  |  |  |  |
| Runoff Impervious Areas                    | 450      | 450    |  |  |  |  |  |  |
| Total Runoff (mm/yr)                       | 485      | 485    |  |  |  |  |  |  |
| Total Outputs (mm/yr)                      | 880      | 880    |  |  |  |  |  |  |
| Difference (Inputs - Outputs)              | 0        | 0      |  |  |  |  |  |  |
| Inputs (Volur                              |          |        |  |  |  |  |  |  |
| Precipitation (m <sup>3</sup> /yr)         | 108629   | 108629 |  |  |  |  |  |  |
| Run-On (m³/yr)                             | 0        | 0      |  |  |  |  |  |  |
| Other Inputs (m <sup>3</sup> /yr)          | 0        | 0      |  |  |  |  |  |  |
| Total Inputs (m³/yr)                       | 108629   | 108629 |  |  |  |  |  |  |
| Outputs (Volu                              |          |        |  |  |  |  |  |  |
| Precipitation Surplus (m <sup>3</sup> /yr) | 66265    | 66265  |  |  |  |  |  |  |
| Net Surplus (m³/yr)                        | 66265    | 66265  |  |  |  |  |  |  |
| Evapotranspiration (m <sup>3</sup> /yr)    | 42364    | 42364  |  |  |  |  |  |  |
| Infiltration (m <sup>3</sup> /yr)          | 6420     | 6420   |  |  |  |  |  |  |
| Rooftop Infiltration (m <sup>3</sup> /yr)  | 0        | 0      |  |  |  |  |  |  |
| Total Infiltration (m <sup>3</sup> /yr)    | 6420     | 6420   |  |  |  |  |  |  |
| Runoff Pervious Areas                      | 4280     | 4280   |  |  |  |  |  |  |
| Runoff Impervious Areas                    | 55565    | 55565  |  |  |  |  |  |  |
| Total Runoff (m <sup>3</sup> /yr)          | 59845    | 59845  |  |  |  |  |  |  |
| Total Outputs (m³/yr)                      | 108629   | 108629 |  |  |  |  |  |  |
| Difference (Inputs - Outputs)              | 0        | 0      |  |  |  |  |  |  |

# Table 3.1: Hydrologic Cycle Component Values

|                                                                  | Water Holding       |                                      |                                       | Evapo-             |               |              |  |  |
|------------------------------------------------------------------|---------------------|--------------------------------------|---------------------------------------|--------------------|---------------|--------------|--|--|
|                                                                  | Capacity            | Hydrologic                           | Precipitation                         | • •                | Runoff        | Infiltration |  |  |
|                                                                  | mm                  | Soil Group                           | mm                                    | mm                 | mm            | mm           |  |  |
| Urban Lawns/Sh                                                   | allow Rooted Cro    | ops (spinach, b                      | eans, beets, car                      | rots)              |               |              |  |  |
| Fine Sand                                                        | 50                  | А                                    | 940                                   | 515                | 149           | 276          |  |  |
| Fine Sandy Loam                                                  | 75                  | В                                    | 940                                   | 525                | 187           | 228          |  |  |
| Silt Loam                                                        | 125                 | С                                    | 940                                   | 536                | 222           | 182          |  |  |
| Clay Loam                                                        | 100                 | CD                                   | 940                                   | 531                | 245           | 164          |  |  |
| Clay                                                             | 75                  | D                                    | 940                                   | 525                | 270           | 145          |  |  |
| Moderately Root                                                  | ed Crops (corn a    | nd cereal grain                      | is)                                   |                    |               |              |  |  |
| Fine Sand                                                        | 75                  | A                                    | 940                                   | 525                | 125           | 291          |  |  |
| Fine Sandy Loam                                                  | 150                 | В                                    | 940                                   | 539                | 160           | 241          |  |  |
| Silt Loam                                                        | 200                 | с                                    | 940                                   | 543                | 199           | 199          |  |  |
| Clay Loam                                                        | 200                 | CD                                   | 940                                   | 543                | 218           | 179          |  |  |
| Clay                                                             | 150                 | D                                    | 940                                   | 539                | 241           | 160          |  |  |
| Pasture and Shru                                                 | ıbs                 |                                      |                                       |                    |               |              |  |  |
| Fine Sand                                                        | 100                 | А                                    | 940                                   | 531                | 102           | 307          |  |  |
| Fine Sandy Loam                                                  | 150                 | В                                    | 940                                   | 539                | 140           | 261          |  |  |
| Silt Loam                                                        | 250                 | с                                    | 940                                   | 546                | 177           | 217          |  |  |
| Clay Loam                                                        | 250                 | CD                                   | 940                                   | 546                | 197           | 197          |  |  |
| Clay                                                             | 200                 | D                                    | 940                                   | 543                | 218           | 179          |  |  |
| Mature Forests                                                   |                     |                                      |                                       |                    |               |              |  |  |
| Fine Sand                                                        | 250                 | А                                    | 940                                   | 546                | 79            | 315          |  |  |
| Fine Sandy Loam                                                  | 300                 | В                                    | 940                                   | 548                | 118           | 274          |  |  |
| Silt Loam                                                        | 400                 | с                                    | 940                                   | 550                | 156           | 234          |  |  |
| Clay Loam                                                        | 400                 | CD                                   | 940                                   | 550                | 176           | 215          |  |  |
| Clay                                                             | 350                 | D                                    | 940                                   | 549                | 196           | 196          |  |  |
| with high runoff p<br>baseflow and runo<br>* This is the total i | nfiltration of whic | otranspiration v<br>h some discharg  | alues are for ma<br>ges back to the s | ture vegetation. S | Streamflow is | composed of  |  |  |
| aeterminea by sun                                                | nming a factor for  | topograpny, so                       | us ana cover.                         |                    |               |              |  |  |
| Topograp                                                         |                     | average slope <                      |                                       | 0.3                |               |              |  |  |
|                                                                  | -                   | nd, average slop                     |                                       | 0.2                |               |              |  |  |
|                                                                  | filly Land,         | , average stope .                    | 28 m to 47 m/kn                       | 1                  | 0.1           |              |  |  |
| Soils                                                            | Tight impe          | rvious elay                          |                                       | 0.1                |               |              |  |  |
|                                                                  | Medium co           | Medium combinations of clay and loam |                                       |                    |               | 0.2          |  |  |
|                                                                  | Open Sand           | y loam                               |                                       |                    | 0.4           |              |  |  |
| Cover                                                            | Cultivated          | Land                                 |                                       |                    | 0.1           |              |  |  |
|                                                                  | Woodland            |                                      |                                       |                    | 0.2           |              |  |  |

- 3-4 -

SWM Planning & Design Manual

Environmental Design Criteria

\*Evaporation from impervious areas was as: of precipitation

20% of precipitation



## WATER BUDGET SUMMARY WATER BALANCE / WATER BUDGET ASSESSMENT

|                                            | Site                |                      |                        |  |  |  |  |  |  |
|--------------------------------------------|---------------------|----------------------|------------------------|--|--|--|--|--|--|
| Characteristic                             | Pre-<br>Development | Post-<br>Development | Change (Pre- to Post-) |  |  |  |  |  |  |
| Inputs (Volumes)                           |                     |                      |                        |  |  |  |  |  |  |
| Precipitation (m <sup>3</sup> /yr)         | 108629              | 108629               | 0.0%                   |  |  |  |  |  |  |
| Run-On (m³/yr)                             | 0                   | 0                    | 0.0%                   |  |  |  |  |  |  |
| Other Inputs (m <sup>3</sup> /yr)          | 0                   | 0                    | 0.0%                   |  |  |  |  |  |  |
| Total Inputs (m <sup>3</sup> /yr)          | 108629              | 108629               | 0.0%                   |  |  |  |  |  |  |
| Outputs (Volumes)                          |                     |                      |                        |  |  |  |  |  |  |
| Precipitation Surplus (m <sup>3</sup> /yr) | 30789               | 66265                | 115.2%                 |  |  |  |  |  |  |
| Net Surplus (m³/yr)                        | 30789               | 66265                | 115.2%                 |  |  |  |  |  |  |
| Evapotranspiration (m <sup>3</sup> /yr)    | 77840               | 42364                | -45.6%                 |  |  |  |  |  |  |
| Infiltration (m <sup>3</sup> /yr)          | 17457               | 6420                 | -63.2%                 |  |  |  |  |  |  |
| Rooftop Infiltration (m <sup>3</sup> /yr)  | 0                   | 0                    | 0.0%                   |  |  |  |  |  |  |
| Total Infiltration (m <sup>3</sup> /yr)    | 17457               | 6420                 | -63.2%                 |  |  |  |  |  |  |
| Runoff Pervious Areas                      | 11638               | 4280                 | -63.2%                 |  |  |  |  |  |  |
| Runoff Impervious Areas                    | 1694                | 55565                | 3179.3%                |  |  |  |  |  |  |
| Total Runoff (m³/yr)                       | 13332               | 59845                | 348.9%                 |  |  |  |  |  |  |
| Total Outputs (m³/yr)                      | 108629              | 108629               | 0.0%                   |  |  |  |  |  |  |

